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PREFACE.

THE original design of the Authors in commencing this work
about twenty years ago has not been carried out beyond the
production of the first of a series of volumes, in which it was
intended that the various branches of mathematical and experi-
mental physics should be successively treated. The intention
of proceeding with the other volumes is now definitely aban-
doned; but much new matter has been added to the first
volume, and it has been divided into two parts, in the second
edition now completed in this second part. The original first
volume contained many references to the intended future
volumes; and these references have been allowed to remain in
the present completion of the new edition of the first volume,
because the plan of treatment followed depended on the
expectation of carrying out the original design.

Throughout the latter part of the book extensive use has,
according to Prof. Stokes’ revival of this valuable notation,
been made of the “solidus” to replace the horizontal stroke in
fractions ; for example ;’—l is prin‘ted a/b. This notation is (as is
illustrated by the spacing between these lines) advantageous for
the introduction of isolated analytical expressions in the midst
of the text, and its use in printing complex fractional and
exponential expressions permits the printer to dispense with
much of the troublesome process known as “justification,” and
effects a considerable saving in space and expense.
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vi PREFACE.

An index to the whole of the first volume has been prepared
by Mr BURNSIDE, and is placed at the end.

A schedule is also given below of all the amendments and
additions (excepting purely verbal changes and corrections)
made in the present edition of the first volume.

Inspection of the schedules on pages xxii. to xxv. will shew
that much new matter has been imported into the present
edition, both in Part I. and Part II. These additions are
indicated by the word “new.”

The most important part of the labour of editing Part II.
has been borne by Mr G. H. DARWIN, and it will be seen from
the schedule below that he has made valuable contributions to
the work. o :
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ERRATA.

p. 79, line 2 from bottom, for (a) read (1).

p. 81, line 9 from bottom, for (§ 531) read (§ 534 d).

p. 82, line 2 from top, for (§ 528) read (§ 534 a).

p. 82, line 17 from top, for (§ 6528) read (§ 534 a).

p- 96, § 6560, insert Gauss’s investigations here referred to will be found in Vol. V.

of his collected works, p. 197, in a paper entitled ** Allgemeine Lehr-
siitze auf die im verkehrten Verhiltnisse des Quadrats der Entfernung
wirkenden Anziehungs- und Abstossungs-Krifte;” originally published
in 1839.

p. 183, line 10, for * Kéx" read ** A3\.”
p- 459, § 848, foot-note. It appears from a communication from Major Baird,

p- 461.

R.E., that the erroneous formula referred to has not been used in the
reduction of the Indian Tidal Observations (March 20, 1883).

Explanatory Note to Appendix, dele last sentence, and read ¢ The
marginal notes however to the appendices which appeared in the first
edition speak as at the date of issue of that edition, viz. 1867 ; in the
new appendices the marginal notes are now added for the first time.”

p- 497, line 8 from bottom, for * 10 cent,” read * 1° cent.”
p- 502, instead of foot-note substitute, ¢ I find that M. Loschmidt had preceded

me in the fourth of the preceding methods of estimating the size of
atoms [Sitzungsberichte of the Vienna Acad., 12 Oct., 1865, p. 895]. He
finds the diameter of a molecule of common air to be about a ten-
millionth of a centimetre. M. Lippmann has also given a remarkably
interesting and original investigation relating to the size of atoms
Comptes Rendus, Oct. 16th, 1882, basing his argument on the varia-
tions of capillarity under electrification. He finds that the thickness
of the double electric layer, according to Helmholtz’s theory, is about
& 35-millionth of a centimetre.”” W. T., Dec. 13, 1852. .






DIVISION II.

ABSTRACT DYNAMICS.

CHAPTER V.
INTRODUCTORY.

438. UNTIL we know thoroughly the nature of matter and Approzi-
the forces which produce its motions, it will be utterly im- m‘:;l' o
possible to submit to mathematical reasoning the exact con- Questions.
ditions of any physical question. It has beenr long understood,
however, that approximate solutions of problems in the ordinary
branches of Natural Philosophy may be obtained by a species
of abstraction, or rather limitation of the data, such as enables
us easily to solve the modified form of the question, while we
are well assured that the circumstances (8o modified) affect the
result only in a superficial manner.

439. Take, for instance, the very simple case of a crowbar
employed to move a heavy mass. The accurate mathematical
investigation of the action would involve the simultaneous
treatment of the motions of every part of bar, fulcrum, and
mass raised; but our ignorance of the nature of matter and
molecular forces, precludes any such complete treatment of the
problem.

It is a result of observation that the particles of the bar,
fulerum, and mass, separately, retain throughout the process
nearly the same relative positions. Hence the idea of solving,
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Approxi-  instead of the complete but infinitely transcendent problem,
mate treat-

m}:;:.ti of another, in reality quite different, but which, while amply simple,
uestions. obviously leads to practically the same results so far as con-

cerns the equilibrium and motions of the bodies as a whole.

440. The new form is given at once by the experimental
result of the trial. Imagine the masses involved to be perfectly
rigid, that is, incapable of changing form or dimensions. Then
the infinite series of forces, really acting, may be left out of
consideration; so that the mathematical investigation deals
with a finite (and generally small) number of forces instead of .
a practically infinite number. Our warrant for such a substi-
tution is to be established thus.

44]1. The effects of the intermolecular forces could be ex-
hibited only in alterations of the form or volume of the masses
involved. But as these (practically) remain almost unchanged,
the forces which produce, or tend to produce, them may be left
out of consideration. Thus we are enabled to investigate the
action of machinery supposed to consist of separate portions
whose form and dimensions are unalterable.

Fatber =~ 442, If we go a little further into the question, we find that

tHonu. the lever bends, some parts of it are extended and others com-
pressed. This would lead us into a very serious and difficult
inquiry if we had to take account of the whole circumstances.
But (by experience) we find that a sufficiently accurate solution’
of this more formidable case of the problem may be obtained
by supposing (what can never be realized in practice) the mass
to be homogeneous, and the forces consequent on a dilatation,
compression, or distortion, to be proportional in magnitude, and
opposed in direction, to these deformations respectively. By
this further assumption, close approximations may be made to
the vibrations of rods, plates, etc., as well as to the statical
effect of springs, ete.

443. We may pursue the process further. Compression, in
general, produces heat, and extension, cold. The' elastic forces
of the material are thus rendered sensibly different from what
they would be with the same changes of bulk and shape, but
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with no change of temperature. By introducing such considera- Further
tions, we reach, without great difficulty, what may be called thas
a third approximation to the solution of the physical problem

considered.

444 We might next introduce the conduction of the heat,
so produced, from point to point of the solid, with its accom-
panying modifications of elasticity, and so on; and we might
then consider the production of thermo-electric currents, which
(as we shall see) are always developed by unequal heating in
a mass if it be not perfectly homogeneous. Enough, however,
has been said to show, first, our utter ignorance as to the true
and complete solution of any physical question by the only
“perfect method; that of the consideration of the circumstances
which affect the motion of every portion, separately, of each
body concerned; and, second, the practically sufficient manner
in which practical questions may be attacked by limiting their
generality, the limitations introduced being themselves deduced
Jrom experience, and being therefore Nature’s own solution (to
a less or greater degree of accuracy) of the infinite additional
number of equations by which we should otherwise have been
encumbered.

446. To take another case: in the consideration of the pro-
pagation of waves at the surface of a fluid, it is impossible,
not only on account of mathematical difficulties, but on account
of our ignorance of what matter is, and what forces its particles
exert on each other, to form the equations which would give
us the separate motion of each. Our first approximation to
a solution, and one sufficient for most practical purposes, is de-
rived from the consideration of the motion of a homogeneous,
incompressible, and perfectly plastic mass; a hypothetical sub-
stance which may have no existence in nature.

446. Looking a little more closely, we find that the actual
motion differs considerably from that given by the analytical
solution of the restricted problem, and we introduce further
considerations, such as the compressibility of fluids, their inter-
nal friction, the heat generated by the latter, and its effects in
dilating the mass, etc. etc. By such successive corrections we

1—2
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Eumm . attain, at length, to a mathematical result which (at all events
tlons. in the present state of experimental science) agrees, within the
limits of experimental error, with observation.

447. Tt would be easy to give many more instances sub-
stantiating what has just been advanced, but it seems scarcely
necessary to do so. We may therefore at once say that there
is no question in physical science which can be completely and
accurately investigated by mathematical reasoning, but that
there are different degrees of approximation, involving assump-
tions more and more nearly coincident with observation, which
may be arrived at in the solution of any particular question.

Object of 448. The object of the present division of this volume 18 to deal

theprosent . op the first and second of these approzimations. In it we shall

the work. suppose all solids either RIGID, s.e., unchangeable in form and
volume, or ELASTIC; but in the latter case, we shall assume the
law, connecting a compression or a distortion with the force
which causes it, to have a particular form deduced from experi-
ment. And we shall in the latter case neglect the thermal or
electric effects which compression or distortion generally cause,
We shall also suppose fluids, whether liquids or gases, to be
either INCOMPRESSIBLE or compressible according to certain
known laws; and we shall omit considerations of fluid friction,
although we admit the consideration of friction between solids.
Fluids will therefore be supposed perfect, i.e., such that any par-
ticle may be moved amongst the others by the slightest force.

449. When we come to Properties of Matter and the various
forms of Energy, we shall give in detail, as far as they are yet
known, the ‘modifications which further approximations have
introduced into the previous results.

Laws of 450. The laws of friction between solids were very ably in-
vestigated by Coulomb ; and, as we shall require them in the
succeeding chapters, we give a brief summary of them here;
reserving the more careful scrutiny of experimental results to
our chapter on Properties of Matter.

461. To produce and to maintain sliding of one solid body
on another requires a tangential force which depends—(1) upon
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the nature of the bodies; (2) upon their polish, or the species and Laws of
qoantity of lubricant which may have been applied ; (3) upon the friotion.
normal pressure between them, to which it is in general directly
proportional. It does not (except in some extreme cases where
scratching or excessive abrasion takes place) depend sensibly
upon the area of the surfaces in contact. When two bodies are
pressed together without being caused to slide one on another,
the force which prevents sliding is called Statical Friction. It
is capable of opposing a tangential resistance to motion which
may be of any amount less than or at most equal to xR ; where
R is the whole normal pressure between the bodies; and u
(which depends mainly upon the nature of the surfaces in
contact) is what is commonly called the coefficient of Statical
Friction. This coefficient varies greatly with the circumstances,
being in some cases as low as 003, in others as high as 0-80.
Later, we shall give a table of its values. When the applied
forces are insufficient to produce motion, the whole amount of
statical friction is not called into play; its amount then just
reaches what is sufficient to equilibrate the other forces, and
its direction is the opposite of that in which their resultant
tends to produce motion.

452, When the statical friction has been overcome, and
sliding is produced, experiment shows that a force of friction
continues to act, opposing the motion ; that this force of Kinetic
Friction is in most cases considerably less than the extreme
force of static friction which had to be overcome before the
sliding commenced ; that it too is sensibly proportional to the
normal pressure ; and that it is approximately the same what-
ever be the velocity of the sliding.

458. In the following Chapters on Abstract Dynamics we con- Belection
fine ourselves mainly to the general principles, and the fundamen- curious
tal formulas and equations of the mathematics of this extensive tlona.
subject; and, neither seeking nor avoiding mathematical exer-
citations, we enter on special problems solely with a view to pos-
sible usefulness for physical science, whether in the way of the
material of experimental investigation, or for illustrating physical
principles, or for aiding in speculations of Natural Philosophy.
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CHAPTER VL

STATICS OF A PARTICLE.—ATTRACTION.

454 'WE naturally divide Statics into two parts—the equi-

P4* librium of a particle, and that of a rigid or elastic body or

system of particles whether solid or fluid. In a very few sec-
tions we shall dispose of the first of these parts, and the rest of
this chapter will be devoted to a digression on the important
subject of Attraction.

465. By § 255, forces acting at the same point, or on the
same material particle, are to be compounded by the same laws
a8 velocities. Hence, evidently, the sum of their components
in any direction must vanish if there is equilibrium ; and there
is equilibrium if the sums of the components in each of three
lines not in one plane are each zero. And thence the necessary _
and sufficient mathematical equations of equilibrium.

Thus, for the equilibrium of a material particle, it is necessary,
and sufficient, that the (algebraic) sums of the components of
the applied forces, resolved in any three rectangular directions,
should vanish.

If P be one of the furces, /, m, n its direction-cosines, we
have
3IP=0, SmP=0, 3nP=0.
If there be not equilibrium, suppose R, with direction-cosines

A, p, v, to be the resultant force. If reversed in direction, it
will, with the other forces, produce equilibrium. Hence

3IP-AR=0, ZmP-pR=0, 3nP-vR=0.
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And R = (3IP)" + (3mP)" + (3nP)’,
. A L v
while _El? az———"nl)_ -m) .
456. We may take one or two particular cases as examples
of the general results above. Thus,
(1) If the particle rest on a frictionless curve, the com-
ponent force along the curve must vanish.

If 2, y, = be the co-ordinates of the point of the curve at which
the particle rests, we have evidently

ds ds
When P, I, m, n are given in terms of #, y, 2, this, with the zwo
equations tq the curve, determines the position of equilibrum. -
(2) 1If the curve be frictional, the resultant force along it

must be balanced by the friction.
If F be the friction, the condition is
dz dy dz
zp(z S meY +na)-17=o.
This gives the amount of friction which will be called into play ;
and equilibrium will subsist until, as a limit, the friction is u times
the normal pressure on the curve. But the normal pressure is

P {(mg—n i—’()',» (» = ,g)u (z‘de-m ‘%’)’}’ .

Hence, the limiting positions, between which equilibrium is pos-
sible, are given by the two equations to the curve, combined with
L] dz\?*\#
ZP(I%: +m:'—y+n‘;—‘:) + uZP g(m:—:-n%)’+ (n:;—l% +( %—ma‘- } =0,
(3) If the particle rest on a smooth surface, the resultant
of the applied forces must evidently be perpendicular to the
surface.
If ¢(z, y, z) =0 be the equation of the surface, we must there-
fore have

zp(z%’m‘iym‘i? 0.

d  do

d¢
4  dy  ds
STP =SB~ P’

and these three equations determine the position of equilibrium.
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Dquili-ta  (4) If it rest on a rough surface, friction will be called into

particle.  play, resisting motion along the surface; and there will be
equilibrium at any point within a certain boundary, determined
by the condition that at #¢ the friction is u times the normal
pressure on the surface, while within it the friction bears a less
ratio to the normal pressure. When the only applied force is
gravity, we bave a very simple result, which is often practically
useful. Let @ be the angle between the normal to the surface
and the vertical at any point ; the normal pressure on the sur-
face is evidently W cos@, where W is the weight of the particle;
and the resolved part of the weight parallel to the surface,
which must of course be balanced by the friction, is W siné.
In the limiting position, when sliding is just about to com-
mence, the greatest possible amount of statical friction is called
into play, and we have

Wsind = pW coef,
or tanf = p.
Angleot  The value of 6 thus found is called the Angle of Repose.

repose,
Let ¢(z, y, 2)=0 be the surface: P, with direction-cosines
1, m, n, the resultant of the applied forces. The normal pressure is

ldd’ d¢ _do

+m-—+n——
d

VI @@
Y 1 R )
B @

Hence, for the boundary of the portion of the surface within
which equilibrium is possible, we have the additional equation

(< r )+ (20 + (g ) (it o)’

Attraction.  467. A most important case of the composition of forces
acting at one point is furnished by the consideration of the
attraction of a body of any form upon a material particle any-
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where situated. Experiment has shown that the attraction Attraction.
exerted by any portion of matter upon another is not modified
by the proximity, or even by the interposition, of other
matter; and thus the attraction of a body on a particle is the
resultant of the attractions exerted by its several parts. To
treatises on applied mathematics we must refer for the examina-
tion of the consequences, often very curious, of various laws of
attraction; but, dealing with Natural Philosophy, we confine
ourselves mainly, (and except where we give the mathematics of
Laplace’s beautiful and instructive and physically important,
though unreal, theory of capillary attraction,) to the law of the
inverse square of the distance which Newton discovered for gra-
vitation. This, indeed, furnishes us with an ample supply
of most interesting as well as useful results.

458. The law, which (as a property of matter) is to be care- Universal
fully considered in the next proposed Division of this Treatise, attraction.
may be thus enunciated.

Every particle of matter in the universe attracts every other
particle, with a force whose direction s that of the line joining
the two, and whose magnitude 18 directly as the product of their
masses, and inversely as the square of their distance from each
other.

Experiment shows (as will be seen further on) that the same
law holds for electric and magnetic attractions under properly
defined conditions.

469. For the special applications of Statical principles to Special unit
which we proceed, it will be convenient to use a special unit of dqmm’
mass, or quantity of matter, and corresponding units for the
measurement of electricity and magnetism.

Thus if, in accordance with the physical law enunciated in
§ 458, we take as the expression for the forces exerted on each
other by masses M and m, at distance D,
Mm
ik
it i8 obvious that our unit force is the mutual attraction of two
units of mass placed at unit of distance from each other.
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Linear, 46.0. Itis .oon.veni.ent for many applications to speak of 'the
volume,  density of a distribution of matter, electricity, etc., along a line,
over a surface, or through a volume. :

Here line-density = quantity of matter per unit of length.
surface-density = ’ ’ ” area.
volume-density = ” ” » 1  volume.

Electricand  461. In applying the succeeding investigationé‘ to electricity
wagnetic . o, » .

onings OT Mmagnetism, it is only necessary to premise that M and m stand

" for quantities of free electricity or magnetism, whatever these

may be, and that here the idea of mass as depending on inertia

is not necessarily involved. The formula ]}l), will still repre-

sent the mutual action, if we take as unit of imaginary electric
or magnetic matter, such a quantity as exerts unit force on an
Positiveand €qual quantity at unit distance. Here, however, one or both
negative
mauses ad- of M, m may be negative; and, as in these applications like
:hg;;ez‘ kinds repel each other, the mutual action will be attraction
attraction. OT repuls:on, according as its sign is negatlve or positive. With
these provisos, the following theory is applicable to any of the
above-mentioned classes of forces. We commence with a few

simple cases which can be completely treated by means of ele-
mentary geometry.
Uniform 462. If the dqﬁ'erent points of a spherical surface atiract

R equally with forces varying inversely as the squares oj the dis-

:mm tances, a particle placed within the surface is not attracted in any
polat direction.

Let HIKL be the spherical surface, and P the particle

within it. Let two lines HK, IL, intercepting very small arcs

HI, KL, be drawn through P; then,

K, on account of the similar triangles

I HPI, KPL, those arcs will be propor-

tional to the distances HP, LP; and

any small elements of the spherical

surface at HI and KL, each bounded

all round by straight lines passing

through P [and very nearly coincid-

ing with HK], will be in the duplicate ratio of those lines.
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Hence the forces exercised by the matter of these elements Unitorm
on the particle P are equal; for they are as the quantities shell. At~
of matter directly, and the squares of the distances, inversely ; internal
and these two ratios compounded give that of equaht.j

The attractions therefore, being equal and opposite, balance on¢
another : and a similar proof shows that the attractions due tq

all parts of the whole spherical surface are balanced by contrary
attractions. Hence the particle P is not urged in any dn'ec-

tion by these attractions.

463. The division of a sphencal surface into infinitely small Digression
elements will frequently occur in the mvestlgatlons which sion of sur-
follow : and Newton’s method, described in the preceding de- elements.
monstration, in which the division is effected .in such a manner
that all the parts may be taken together in pairs of opposite
elements with reference to an internal point; besides other
methods deduced from it, suitable to the special problems to be
examined ; will be repeatedly employed. The present digres-
gion, in which some definitions and elementary geometrical
propositions regarding this subject are laid down, will simplify
the subsequent demonstrations, both by enabling us, through
the use of convenient terms, to avoid circumlocution, and by
affording us convenient means of reference for elementary
principles, regarding which repeated explanations might other-
wise be necessary.

464. If a straight line which constantly passes through a Explans.
fixed point be moved in any manner, it is said to describe, or definitions
generate, a contcal surface of which the fixed point is the cones.
vertex.

If the generating line be carried from a given position con-
tinuously through any series of positions, no two of which
coincide, till it is brought back to the first, the entire line on
the two sides of the fixed point will generate a complete conical
surface, consisting of two sheets, which, are called vertical or
oppostte cones. Thus the elements HI and KL, described in
Newton’s demonstration given above, may be considered as being
cut from the spherical surface by two opposite cones baving P
for their common vertex.
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The solid 466. If any number of spheres be described from the ver-
angle of a

cons, orof ey of a cone as centre, the segments cut from the concentric

conical — gpherical surfaces will be similar, and their areas will be as the
squares of the radii. The quotient obtained by dividing the
area of one of these segments by the square of the radius of the
spherical surface from which it is cut, is taken as the measure
of the solid angle of the cone. The segments of the same
spherical surfaces made by the opposite cone, are respectively
equal and similar to the former (but “ perverted”). Hence the
solid angles of two vertical or opposite cones are equal : either
may be taken as the solid angle of the complete conical surface,
of which the opposite cones are the two sheets.

Sum of sl 466. Since the area of a spherical surface is equal to the
€ 8011

wngleg ~  Square of its radius multiplied by 4r, it follows that the sum of

point=4r. the solid angles of all the distinct cones which can be described
with a given point as vertex, is equal to 4.

Bum o the 467. The solid angles of vertical or opposite cones being
:(I’l:lil the equa.l we may infer from what precedes that the sum of the
Sonioat sar- solid angles of all the complete conical surfaces which can be

" described without mutual intersection, with a given point as

vertex, is equal to 2.

olid angle 468. The solid angle subtended at a point by a superficial
atapons area of any kind, is the solid angle of the cone generated by a

Corminated straight line passing through the point, and carried entirely
round the boundary of the area.

Orthogoml 469. A very small cone, that is, a cone such that any two

and obliq

mn; o poslt.lons of the generating line contain but a very small angle,
is said to be cut at right angles, or orthogonally, by a spherical
surface described from its vertex as centre, or by any surface,
whether plane or curved, which touches the spherical surface at
the part where the cone is cut by it.

A very small cone is said to be cut obliquely, when the section

is inclined at any finite angle to an orthogonal section ; and this
angle of inclination is called the obliquity of the section.

The area of an orthogonal section of a very small cone is equal
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to the area of an oblique section in the same position, multiplied On.bogoml

iquo

by the cosine of the obliquity. sections of &
Hence the area of an oblique section of a small cone is equal
to the quotient obtained by dividing the product of the square
of its distance from the vertex, into the solid angle, by the

cosine of the obliquity.

470. Let E denote the area of a very small element of 8 Ares of seg.
spherical surface at the point £ (that is to say, an element from spher-
ical surface
every part of which is very near the point E), let o denote by small
the solid angle subtended by E at any pomt P, and let PE,
produced if necessary, meet the surface again in E': then, a
denoting the radius of the spherical surface, we have

For, the obliquity of the element E, considered as a section
of the cone of which P is the vertex and
the element £ a section; being the angle
between the given spherical surface and g
another described from P as centre, with
PE as radius; is equal to the angle be-
tween the radii, EP and EC, of the two
spheres. Hence, by considering the iso-
sceles triangle ECE’, we find that the cosine of the obliquity

EE EE .
is equal to i &G T W o5, and we arrive at tbe preceding

El

expression for E.

471. The pttractzon of a uniform spherical surface on am Unitorm
external point 18 the same as if the whole mass were collected at .Eeumf«'c-

the centre®. otormal”
point.

* This theorem, which is more comprehensive than that of Newton in his

first proposition regarding attraction on an external point (Prop. LXXI.), is

fully established as & corollary to & subsequent proposition (Prop. LXXIII,

oor. 3). If we had considered the proportion of the forces exerted upon two

external points at different distances, instead of, as in the text, investigating

the absolute force on one point, and if besides we had taken together all the

pairs of elements which would constitute two narrow annular portions of the

surface, in planes perpendicular to PC, the theorem and its demonstration

would have coincided precisely with Prop. LXXI. of the Principia.
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Let P be the external point, C' the centre of the sphere, and
CAP a straight line cutting
the spherical surface in A.
Take I in CP, so that CP,
c CA, CI may be continual pro-
P portionals, and let the whole
spherical surface be divided
into pairs of opposite elements
with reference to the point I.
Let H and H' denote the magnitudes of a pair of such
elements, situated respectively at the extremities of a chord
HH'; and let o denote the magnitude of the solid angle sub-
tended by either of these elements at the point 1.

We have (§ 469),
. , o JH?

=i ™ =S
Hence, if p denote the density of the surface, the_attractions of
the two elements H and H' on P are respectively

® IH? ® IH"
PoosCHI " PH*" *™ P G0H'T  PH™

Now the two triangles PCH, HCI have a common angle at C,
and, since PC : CH :: CH : CI, the sides about this angle are

proportional. Hence the triangles are similar; so that the
angles CPH and CHI are equal, and

IH CH a

HPTCP~ (P
In the same way it may be proved, by considering the triangles
PCH’, H'CI, that the angles CPH’ and CH'I are equal, and
that

HP~CP~CP
Hence the expressions for the attractions of the elements H
and H’ on P become

al

® a d )
P s CHI " OP** *"° PoosCH'I ' TP
which are equal, since the triangle HCH' is isosceles; and, for
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the same reason, the angles CPH, CPH’, which have been Unitorm
proved to be respectively equal to the angles CHI, CH'I, are » eﬁf: °:A:n

equal. We infer that the resultant of the forces due to the eztl:lm
two elements is in the direction PC, and is equal to ¥

2
2w.p. (;LP’ .

To find the total force on P, we must take the sum of all the
forces along PC due to the pairs of opposite elements; and,
since the multiplier of  is the same for each pair, we must
add all the values of w, and we therefore obtain (§ 467), for the
required resultant,

4rpa’

o
The numerator of this expression; being the product of the
density, into the area of the spherical surface; is equal to the
whole mass; and therefore the force on P is the same as if the
whole mass were collected at C.

Cor. The force on an external point, infinitely near the surface,
is equal to 4rp, and is in the direction of a normal at the point.
The force on an internal point, however near the surface, is, by a
preceding proposition, nzl.

472. Let o be the area of an infinitely small element of the Attraction
surface at any point P, and at any other Soent of the
point H of the surface let a small element "
subtending a solid angle o, at P, be taken.

The area of this element will be equal to
. PH*
cos CHP’
and therefore the attraction along HP,
which it exerts on the element o at P, will
be equal to
p®. po
cos CHP’ " cos (/HPP o
Now the total attraction on the element at P is in the dlrectlon

CP; the component in this direction of the attraction due to
the element H, is

w.p'c;
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Astraction and, since all the cones corresponding to the different elements
mm of the spherical surface lie on the same side of the tangent
plane at P, we deduce, for the resultant attraction on the
element o,
‘ 2mp’o.

From the corollary to the preceding proposition, it follows that
this attraction is half the force which would be exerted on an
external point, possessing the same quantity of matter as the
element o, and placed infinitely near the surface.

473. In some of the most important elementary problems
of the theory of electricity, spherical surfaces with densities
varying inversely as the cubes of distances from eccentric points
occur: and it is of fundamental importance to find the attrac-
tion of such a shell on an internal or external point. This may
be done synthetically as follows; the investigation being, as we
shall see below, virtually the same as that of § 462, or § 471.

Attraction 474, Let us first consider the case in which the given point
spherical S and the attracted point P are separated by the spherical sur-
xx:lh the face. The two figures represent the varieties of this case in

vnneﬁr;-. which, the point S being without the sphere, P is within; and,

versel,

the 3!;&::'0. S being within, the attracted point is external. The same de-
froms&iven monstration is applicable literally with reference to the two
figures; but, to avoid the consideration of negative quan-
tities, some of the expressions may be conveniently modified to
suit the second figure. In such instances the two expressions
are given in a double line, the upper being that which is most
convenient for the first figure, and the lower for the second.
Let the radius of the sphere be denoted by a, and let f be
the distance of § from C, the centre of the sphere (not repre-
sented in the figures).

Join SP and take 7 in this line (or its continuation) 8o that
(fig.1) SP.ST=jf"-a"
(fig.2) SP.T8 =a'-f"

Through T’ draw any line cutting the spherical surface at K, K.

Join SK, SK’, and let the lines so drawn cut the spherical
surface again in E, E’,



474.] STATICS. 17

Let the whole spherical surface be divided into pairs of Attraction
opposite elements with reference to the point 7. Let K and m«&
K’ be a pair of such elements situated at the extremities of the yhich the
chord KK', and subtending the solid angle o at the point T'; m“:.
and let elements £ and E’ be taken subtending at S the same thecube o
solid angles respectively as the elements K and K'. By this fromssiven
means we may divide the whole spherical surface into pairs of
conjugate elements, E, E’, since it is easily seen that when we

have taken every pair of elements, K, K’, the whole surface

P
T K ()

K '
will have been exhausted, without repetition, by the deduced
elements, E, E. Hence the attraction on P will be the
final resultant of the attractions of all the pairs of elements,
E E'.
Now if p be the surface density at E, and if F' denote the

attraction of the element Z on P, we have
E

=P =
F—EP"

According to the given law of density we shall have

=

P=SE
where A is a constant. Again, since SEK is equally inclined
to the spherical surface at the two points of intersection, we

SE'* . SE' %2w.TK
have E=spn-K=gpn- g

and hence
» SE' 2w.TK®
Fe SE*'SK* KK _, % TK*
EP* ‘KK 'SE.SK*.EP

VOL. IL. 2
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Astrsction Now, by considering the great circle in which the gphere is cut
spherioal by & plane through the line SK, we find that

whioh the 1o
density (ﬁg, 1) SK.SE = f -a,
versely 18 (fig. 2) KS.SE=a"—f*,

the cube of . .
the distance and hence SK.SE =8P .ST, from which we infer that the tri-

pint.  anoles KST, PSE are similar; so that TK : SK :: PE : SP.
T _ 1

SK*.PE*~ SP"

and the expression for F' becomes

2a 1
F=X.—K-K,—.§ETS—.P',.M.

Modifying this by preceding expressions we have

Hence

()]

2a
(ﬁg 1) F=X.W.(.f—,:—‘?)—S—P.SK,

a @

2
(fig. 2) F=\. KK @=f% SP,.KS.
Similarly, if 7 denote the attraction of E' on P, we have
, 20 ) ,
(ig. 1) F' = )"KK"(f'—a’) SP"SK’
' 2a o
(fig. 2) F' =\ T{?'_——(a'—f’)SP"K'S'

Now in the triangles which have been shown to be similar, the
angles TKS, EPS are equal; and the same may be proved of
the angles TK'S, E'PS. Hence the two sides SK, SK’ of the
triangle KSK' are inclined to the third at the same angles
as those between the line PS and directions PE, PE’ of the two
forces on the point P; and the sides SK, SK’ are to one
another as the forces, ¥, F', in the directions PE, PE'. It
follows, by “the triangle of forces,” that the resultant of ¥ and
F' is along PS8, and that it bears to the component forces the
same ratios as the side KK of the triangle bears to the other
two sides. Hence the resultant force due to the two elements
E and E’ on the point P, is towards S, and is equal to

2a © . A 2.0
MER (Feay . 8p KK O AT s
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The total resultant force will consequently be towards §; and Attrastion
we find, by summation (§ 467) for its magnitude, . Spherical

surface of
. d7a :,'}:f,’,'{;“
(‘fq‘._g)'g"pl- varies lyln-
Hence we infer that the resultant force at any point P, :g:mdmi:'z;été
separated from S by the spherical surface, is the same as if a point.

quantity of matter equal to },47;? were concentrated at the

point S.

476. To find the attraction when S and P are either both
without or both within the spherical surface.

Take in CS, or in CS produced through S, a point S,, such
that C8.C8,=a"

Then, by a well-known geometrical theorem, if £ be any point
on the spherical surface, we have

SE _f
SE a
Hence we have
M'
SE’ f' S.E*

Hence, p being the surface-denslty at E, we have

sﬁrw»

if A= f, :

(o]

)

Hence, by the investigation in the preceding section, the
attraction on P is towards S, and is the same as if a quantity
2—2
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Attracti '
2:,,';",: of matter equal to %‘%" were concentrated at that point;

wiich the J, being taken to den:)be C8,. If for f, and A, we substitute

2 , al
versely a8 their values, 2 and X2 , we have the modified expression
the cube of f fl
the distance
from a given
point.

7\.9.4nra

e

for the quantity of matter which we must conceive to be col-
lected at S,.

Uningolag. 476. If a spherical surface be electrified in such a way
under the that the electrical density varies inversely as the cube of f.he
n skookrio distance from an internal point S, or from the corresponding
external point S, it will attract any external point, as if its
whole electricity were concentrated at S, and any internal point,
as if a quantity of electricity greater than its own in the ratio

of a to f were concentrated at S,.
Let the density at £ be denoted, as before, by ;S';}" Then,

if we consider two opposite elements at £ and E’, which sub-
tend a solid angle w at the point S, the areas of these
”
elements being L?Eﬂ'-’ and QJZ'EA?E_ , the quantity of elec-
tricity which they possess will be
A2 .0/1 1 A 2.0

~ 5 (SE* 5E) S5 65
Now SE.SE’ is constant (Euc. 111 33) and its value is @* — f™.
Hence, by summation, we find for the total quantity of elec-
tricity on the spherical surface

. dma

@
Hence, if this be denoted by m, the expressions in the preced-
ing paragraphs, for the quantities of electricity which we must
suppose to be concentrated at the point S or S,, according as P
is without or within the spherical surface, become respectively

m, and ;m
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477. The direct analytical solution of such problems con- Direet ana-
gists in the expression, by § 455, of the three components of L’ﬁlm?of
the whole attraction as the sums of its separate parts due to the
several particles of the attracting body; the transformation, by
the usual methods, of these sums into definite integrals; and the
evaluation of the latter. This is, in general, inferior in elegance
and simplicity to the less direct mode of solution depending
upon the determination of the potential energy of the attracted
particle with reference to the forces exerted upon it by the
attracting body, a method which we shall presently develop
with peculiar care, as being of incalculable value in the theories
of Electricity and Magnetism as well as in that of Gravitation.

But before we proceed to it, we give some instances of the
direct method, beginning with the case of a spherical shell.

(@) Let P be the attracted point, O the centre of the shell. Uniform
Let any plane perpendicular to OP cut it in ¥, and the sphere
in the small circle QR.
Let QOP=0, 0Q=a,
OP=D. Then as the
whole attraction is evi-
dently along PO, we
may at once resolve
the parts of it in that
direction. The circular
band corresponding to
6, 6 +dO has for area
2xa® sin 6d6. Hence if M be the mass of the shell, the component
attraction of the band on P, along PO, is

M . PN
-§sm0d0 PQ" and P@Q*=a’ + D* — 2aD cos 0.
Hence if PQ =2, adx = aD sin 6d6.
o -a'+ D"
AISO PN=D—GOW0= _-_2ﬁ—’
hence the attraction of the band is
M 2 -a +”dc.

A0 o
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This divides itself, on integration, into two cases,
(1) P externsl, i.e., D>a. Here the limits of z are D-a

— a¥]D+
and D + a, and the attraction is 4—% [E - D'__a s _ ¥

a oz |p-o DV ™
before.
(2) P internal, t.e., D <a. Here the limits are a — D and
*_ D"a+D
a + D, and the attraction is !—, [E + a—i]a =0.
4D a ax a-D

() A useful case is that of the attraction of a circular plate
of uniform surface density on a point in a line through its centre,
and perpendicular to its plane.

If a be the radius of the plate, A the distance .of the point from
it, and M its mass, the attraction (which is.evidently in a direc-
tion perpendicular to the plate) is easily seen to be
Jl[j‘a 2hrdr =2_1!_{{ __h }
ao et o Beat

If p denote the surface density of the plate, this becomes

2m (l - —h—) ;
PN T’
which, for an infinite plate, becomes
2wp.
From the preceding formula many useful results may easily
be deduced : thus,

(¢) A uniform cylinder of length /, and diameter a, attracts
a point in its axis at & distance # from the nearest end with a
force :

2%p :H (1 - —_—Jh'h+ a.) dh=2wp{l-J(@+1) +a*+ Jz* +a').

‘When the cylinder is of infinite length (in one direction) the
attraction is therefore

2mp (o' + " - ) ;

and, when the attracted particle is in contact with the centre of
the end of the infinite cylinder, this is

2wpa.
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(@) A right cone, of semivertical angle a, and length /, Right cone
attracts a particle at its vertex. Here we have at once for the at o Peacte
attraction, the expression

2npl (1 — cos a),
which is simply proportional to the length of the axis.

It is of course easy, when required, to find the necessarily less
simple expression for the attraction on any point of the axis.

(¢) For maguetic and electro-magnetic applications a very Positive
useful case is that of two equal discs, each perpendicular to the :"e:.un
line joining their centres, on any point in that line—their masses “*™
(§ 461) being of opposite sign—that is, one repelling and the
other attracting.

Let a be the radius, p the mass of a superficial unit, of either,
¢ their distance, z the distance of the attracted point from the
nearest disc. The whole action is evidently

gmp [ 220 _ ——-”:} :
(®+o)'+d* Jo' +at
In the particular case when ¢ is diminished without limit, this
becomes

2mpe L

(=* + a")}

478. Let P and P be two points mﬁmtely near one another Fariation of
on two sides of a surface over which matter is distributed ; and crosing
let p be the density of this distribution on the surface in the :“m“"
neighbourhood of these points. Then whatever be the resultant
attraction, R, at P, due to all the attracting matter, whether
lodging on this surface, or elsewhere, the resultant force, R, on
P is the resultant of a force equal and parallel to R, and a
force equal to 4mp, in the direction from P’ perpendicularly
towards the surface. For, suppose PP to be perpendicular to
the surface, which will not limit the generality of the pro-
position, and consider a circular disc, of the surface, having its
centre in PP, and radius infinitely small in comparison with
the radii of curvature of the surface but infinitely great in com-
parison with PP. This disc will [§ 477, (b)] attract P and P
with forces, each equal to 27p and opposite to one another in
the line PP'. Whence the proposition. It is one of much im-
portance in the theory of electricity.
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(a) As a further example of the direct analytical process, let
D - us find the components of the
'_,/"' attraction exerted by a uni-

L forr‘n hemisphere on a particle

S P at its edge. Let 4 be the

[ o particle, 4B a diameter of
AEEZ"_—_—""9B the base, AC the tangent to

the base at 4; and 4.D per-
pendicular to AC, and 4B.
c Let RQ4 be a section by a
plane passing through AC'; 4Q any radius-vector of this section ;
Papointin 4Q. Let AP=7, CAQ=6, RAB=¢. The volume
of an element at P is
7df . r sin Ode . dr =" sin Odg dbdr.

The resultant attraction on unit of matter at 4 has zero com-
ponent along AC. Along AB the component is
pJJ/ sin 6dpdbdr cos ¢ sin 6,
between proper limits. The limits of » are 0 and 2z sin 6 cos ¢,
those of ¢ are 0 and 7, and those of 0 are 0 and x. Henos,
Attraction along 4B = 3=pa. '
Along AD the component is

pﬁ+'f/.‘am’m‘sin0d0d¢da'sin¢sin0=§pa.

(b) Hence at the southern base of a hemispherical hill of
radius @ and density p, the true latitude (as mbasured by the
aid of the plumb-line, or by reflection of starlight in a trough of
mercury) is diminished by the attraction of the mountain by the
angle

§mpa
G - 3pa
where @ is the attraction of the earth, estimated in the same
units, Hence, if R be the radius and ¢ the mean density of the
earth, the angle is
2
37PS pa
TroR—1pa’ " or

approximately.
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Hence the latitudes of stations at the base of the hill, north and Alterstion

of luﬁtudo;
hemi-

south of it, differ by ;3 (2 + %); instead of by R , a8 they would -?herm-l

do if the hill were removed. cavity,
In the same way the latitude of a place at the southern edge
of a hemispherical cavity is increased on account of the cavity

by }:—j; where p is the density of the superficial strata.
(¢) For mutual attraction between two segments of a homo-

geneous solid sphere, investigated indirectly on & hydrostatic
principle, see § 753 below.

479. As a curious additional example of the class of ques- by crevasse.

tions considered in § 478 (a) (b), a deep crevasse, extending east
and west, increases the latitude of places at its southern edge

by (approximately) the angle ;_p% where p is the density of

the crust of the earth, and a is the width of the crevasse. Thus
the north edge of the crevasse will have a lower latitude than

the south edge if gi—’_ >1, which might be the case, as there

are rocks of density § x 5°5 or 3'67 times that of water. At a
considerable depth in the crevasse, this change of latitudes is
nearly doubled, and then the southern side has the greater
latitude if the density of the crust be not less than 183 times
that of water. The reader may exercise himself by drawing
lines of equal latitude in the neighbourhood of the crevasse in
this case : and by drawing meridians for the corresponding case
of a crevasse running north and south.

480. It is interesting, and will be useful later, to consider Attraction

as a particular case, the attraction of a sphere whose mass is wmm

composed of concentric layers, each of uniform density. -helhof
Let R be the radius, » that of any layer, p= F (r) its density. deasiy:
Then, if o be the mean density,
R
swoR = 4w j pdr,
from which o may be found.
The surface attraction is §roR, = G suppose.

At a distance » from the centre the attraction is 4—’: fo 'pr'dr.
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Attraction If it is to be the same for all points inside the sphere
g; sphere . @
qasnirio [ orar =g
uniform

deasity. 1 ¢
Hence p=F (r) = P is the requisite law of density.

If the demsity of the upper crust be =, the attraction at a
depth 2, small compared with the radius, is
$ro, (R-1)=G,,

where o, is the mean density of nucleus when a shell of thick-
ness A is removed from the sphere. Also, evidently,

4noy (R-h) + 4wt (R-h)'h= 4 no R},
or G, (R -k)* + 4ur (R-1)*h=GR",

whenee 6,=¢ (1 + 27;‘) — dorrh,
The attraction is therefore unaltered at a depth A4 if
% = gwo =2mr.

481. Some other simple cases may be added here, as their
results will be of use to us subsequently.

Attraction (a) The attraction of a circular arc, 4 B, of uniform density,
mm:,: R on a particle at the centre, C, of the
}1' circle, lies evidently in the line CD

il bisecting the arc. Also the resolved

Q part parallel to CD of the attraction

of an element at P is

<
mass of 3eDt?ent at Pcos _PoD.

Now suppose the density of the chord 4B
to be the same as that of the arc. Then

B for (mass of element at P x cos PED)
we may put mass of projection of element

on AB at Q; since, if PT be the tangent at P, PTQ = PCD.

Hence sttraction along CD = Sum of pm%ezb:ad elements

pAB
= oD’
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if p be the density of the given arc, Astraction
< arc,
_ 2ps8in ACD
= T .

It is therefore the same as the attraction of & mass equal to the
chord, with the arc’s density, concentrated at the point .D.

(3) Again a limited straight line of uniform density attracts siraight
any external point in the same direction and with the same
force as the corre- c
sponding arc of a
circle of the same
density, which has
the point for cen-
tre, and touches the
straight line. ' —

For if CpP be A P B D
drawn cutting the circle in p and the line in P; Element at
p :elementat P :: Cp : CP gz ; that is, as Cp* : CP*. Hence
the attractions of these elements on C are equal and in the same
line. Thus the arc ab attracts C' as the line 4B does; and, by
the last proposition, the attraction of 4B bisects the angle 4CB,
and is equal to

b sin J40B.

(¢) This may
be put into other
useful forms —
thus, let CKF
bisect the angle
ACB, and let
Aa, Bb, EF, be
drawn perpen -
dicular to CF
from the ends
and widdle point
of AB. We e

AB CD
OB AC+CBCK'

have gin KCB = sm CKD
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Hence the attraction, which is along CK, is
2048 _ pAB CF.
(AC+CB)CK " 8(AC +CB)(AC +CB - 4B’
For, evidently,

bK : Ka :: BK : KA :: BC : CA :: bC : Ca,
t.e., ab is divided, externally in C, and internally in X, in the
same ratio. Hence, by geometry,

KC.CF=aC.Cb=}{4C+CB - 4B,
which gives the transformation in (1).

(d) CF is obviously the tangent at C' to a hyperbola, passing
through that point, and having 4 and B as foci. Hence, if in
any plane through 4B any hyperbola be described, with foci 4
and B, it will be a line of force as regards the attraction of the
line AB; that is, as will be more fully explained later, a curve
which at every point indicates the direction of attraction.

(¢) Similarly, if a prolate spheroid be described with foci 4
and B, and passing through C, C'F will evidently be the normal
at C; thus the force on a particle at C' will be perpendicular to
the spheroid ; and the particle would evidently rest in equilibrium
on the surface, even if it were smooth, This is an instance of
(what we shall presently develop at some length) a surface of
equilibrium, a level surface, or an equipotential surface.

)

(f) We may further prove, by a simple application of the
preceding theorem, that the lines of force due to the attraction
of two infinitely long rods in the line 4.B produced, one of which
is attractive and the other repulsive, are the series of ellipses
described from the extremities, 4 and B, as foci, while the
surfaces of equilibrium are generated by the revolution of the
confocal hyperbolas,

482. As of immense importance, in the theory not only of
gravitation but of electricity, of magnetism, of fluid motion, of
the conduction of heat, etc., we give here an investigation of the
most important properties of the Potential.

4838. This function was introduced for gravitation by Laplace,
but the name was first given to it by Green, who may almost
be said to have in 1828 created the theory, as we now have it.
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Green’s work was neglected till 1846, and before that time most Potential.
of its important theorems had been re-discovered by Gauss,
Chasles, Sturm, and Thomson.

In § 273, the potential energy of a conservative system in any
configuration was defined. When the forces concerned are
forces acting, either really or apparently, at a distance, as
attraction of gravitation, or attractions or repulsions of electric
or magnetic origin, it is in general most convenient to choose,
for the zero configuration, infinite distance between the bodies
concerncd. We have thus the following definition :—

484 The mutual potential energy of two bodies in any
relative position is the amount of work obtainable from their
mutual repulsion, by allowing them to separate to an infinite
distance asunder. When the bodies attract mutually, as for
instance when no other force than gravitation is operative, their
mutual potential energy, according to the convention for zero
now adopted, is negative, or (§ 547 below) their ezhaustion of
potential energy is positive.

485. The Potential at any point, due to any attracting or
repelling body, or distribution of matter, is the mutual potential
energy between it and a unit of matter placed at that point.
But in the case of gravitation, to avoid defining the potential
as a negative quantity, it is convenient to change the sign.
Thus the gravitation potential, at any point, due to any mass,
i8 the quantity of work required to remove a unit of matter
from that point to an infinite distance.

486. Hence if V be the potential at any point P, and V,
that at a proximate point Q, it evidently follows from the above
definition that V' — V| is the work required to remove an inde-
pendent unit of matter from P to Q; and it is useful to note
that this is altogether independent of the form of the pat
chosen between these two points, as it gives us a prelim.i.nnrg
idea of the power we acquire by the introduction of this mode”
of representation.

Suppose @ to be so near to P that the attractive forces
exerted on unit of matter at these points, and therefore at any
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Potential. point in the line P @, may be assumed to be equal and parallel.
Then if F represent the resolved part of this force along PQ,
F. PQ is the work required to transfer unit of matter from P
to ¢. Hence

V-V,=F.PQ,
_r-v
or F= P Q ’
Porcein  that is, the attraction on unit of matter at P in any direction

potential. ~ PQ), i3 the rate at which the potential at P increases per unit
of length of PQ.

Equipoten- 487. A surface, at every point of which the potential has the
same value, and which is therefore called an Equipotential Sur-
Sace, is such that the attraction is everywhere in the direction
of its normal. For in no direction along the surface does the
potential change in value, and therefore tbere is no force in
any such direction. Hence if the attracted particle be placed
on such a surface (supposed smooth and rigid), it will rest in
any position, and the surface is therefore sometimes called a
Surface of Equilibrium. We shall see later, that the force
on a particle of a liquid at the free surface is always in the
direction of the normal, hence the term Level Surface, which
is often used for the other terms above.

Relative in- 488, If a series of equipotential surfaces be constructed for

foroat. " values of the potential increasing by equal small amounts, it is

points of evident from § 486 that the attraction at any point is 1nversely

m?gtul proportional to the normal distance between two successive
surfaces close to that point; since the numerator of the ex-
pression for F is, in this case, constant.

Line of 489. A line drawn from any origin, so that at every point of
its length its tangent is the direction of the attraction at that
point, is called a Line of Force; and it obviously cuts at right
angles every equipotential surface which it meets.

These three last sections are true whatever be the law of

attraction ; in the next we are restricted to the law of the
inverse square of the distance.
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490. If, through every point of the boundary of an infinitely Jariation of
small portion of an equipotential surface, the corresponding alons s line
lines of force be drawn, we shall evidently have a tubular
surface of infinitely small section. The force in any direction,
at any point within such a tube, so long as it does not cut
through attracting matter, is inversely as the section of the °
tube made by a plane passing through the point and perpen-
dicular to the given direction. Or, more simply, the whole
force is at every point tangential to the direction of the tube,
and inversely as its transverse section: from which the more
general statement above is easily seen to follow.

This is an immediate consequence of a most important
theorem, which will be proved later, § 492. The surface in-
tegral of the attraction exerted by any distribution of matter in
the direction of the normal at every point of any closed surface
s 4w M ; where M 13 the amount of matter within the surface,
while the attraction 18 considered positive or negative according
as it 18 inwards or outwards at any point of the surface.

For in the present case the force perpendicular to the tubular
part of the surface vanishes, and we need consider the ends
only. When none of the attracting mass is within the portion
of the tube considered, we have at once

Fo—Fa' =0,
F being the force at any point of the section whose area is w.
This is equivalent to the celebrated equation of Laplace—
App. B (a); and below, § 491 (c).

When the attracting body is symmetrical about a point, the
lines of force are obviously straight lines drawn from this
point. Hence the tube is in this case a cone, and, by § 469,
w i3 proportional to the square of the distance from the vertex.
Hence F' is inversely as the square of the distance for points
external to the attracting mass.

When the mass is symmetrically disposed about an axis in
infinitely long cylindrical shells, the lines of force are evidently
perpendicular to the axis. Hence the tube becomes a wedge,
whose section is proportional to the distance from the axis,
and the attraction is therefore inversely as the distance from
the axis.
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Varistionof When the mass is arranged in infinite parallel planes, each
. intensity
slon 1 line of uniform density, the lines of force are obviously perpen-

Potential
due to an

poiut,

dicular to these planes; the tube becomes a cylinder; and,
gince its section is constant, the force is the same at all dis-
tances,

If an infinitely small length ! of the portion of the tube
considered pass through matter of density p, and if @ be the
area of the section of the tube in this part, we have

Fo — F'e' = 4rlwp.
This is equivalent to Poisson’s extension of Laplace’s equation
(§ 491 (¢)].

481, In estimating work done against a force which varies
inversely as the square of the distance from a fixed point, the
mean force is to be reckoned as the geometrical mean between
the forces at the beginning and end of the path: and, what-
ever may be the path followed, the effective space is to be
reckoned as the difference of distances from the attracting point.
Thus the work done in any course is equal to the product of
the difference of distances of the extremities from the attract-
ing point, into the geometrical mean of the forces at these
distances; or, if O be the attracting point, and m its force
on a unit mass at unit distance, the work done in moving
a particle, of unit mass, from any position P to any other
position P, is

m' m m
(OP,-OP)\/UPTD?“ or (—)-P—a:li.

To prove this it is only necessary to remark, that for any
infinitely small step of the motion, the effective space is clearly
the difference of distances from the centre, and the working
force may be taken as the force at either end, or of any inter-
mediate value, the geometrical mean for instance: and the
preceding expression applied to each infinitely small step shows
that the same rule holds for the sum making up the whole work
done through any finite range, and by any path.

Hence, by § 485, it is obvious that the potential at P, of a

mass m situated at O, is (%; and thus that the potential of any
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mass at a point P is to be found by adding the quotients of every Potential

portion of the mass, each divided by its distance from P. ;gti;a:tins

a. For the analytical proof of these propositions, consider, Analtical
. . . nvestiga-

first, a pair of particles, 0 and P, whose masses are m and unity, tion of the
and co-ordinates abe, zyz. If D be their distance potential.

D'=(x-a)+(y-b)+(2—¢c)
The components of the mutual attraction are

X-mi32, T-nlyl, z-mi,

and therefore the work required to remove P to infinity is
f(x ~a)dz+(y—b)dy + (2—c)dz
" y7g

dD
%

which, since the superior limit is D = oo, is equal to

=m

m

Z')-
The mutual potential energy is therefore, in this case, the
product of the masses divided by their mutual distance; and
m
‘5-
Again, if there be more than one fixed particle m, the same
investigation shows us that the potential at xyz is

therefore the potential at «, y, z, due to m, is

m
35

And if the particles form a continuous mass, whose density at
a, b, ¢ is p, we have of course for the potential the expression

o,

the limits depending on the boundaries of the mass,

If we call V the potential at any point P (z, y, 2), it is Foree ®
evident (from the way in which we have obtained its value) oy po
that the components of the attraction on unit of matter at P are

av av av
X= dﬂ’z” Y——T Z—-——a—

VOL. 11, 3
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Hence the force, resolved along any curve of which s is the arc,

. de o dy dVde dVdy dVde
s XY+ Z"'(dwd. Iy dst s
4

4.

All this is evidently independent of the question whether P lies
within the attracting mass or not.

b. If the attracting mass be a sphere of density p, and centre
a, b, ¢, and if P be within its surface, we have, since the exterior
shell has no effect,

av 4 z—a
Y=-Z =30 r
4
=§"’P(”-“)
Hence g—_ﬂ=£,
dw~ dF 3P
¢. Nowif

1
we have V'ﬁ=0, as was proved before, App. Bg (14) as a
particular case of g. The proof for this case alone is as follows:
d1 x—a, a1 u___ 3(xz—a)"

&D- "D @D Dt D¢

and from this, and the similar expressions for the second differ-
entials in y and 2, the theorem follows by summation.

Hence as V= ff pda'li)bdc

and p does not involve z, y, 2, we see that as long as D does not
vanish within the limits of integration, i.e., as long as P is not a
point of the attracting mass

V'7=0
or, in terms of the components of the force,

dx dY az
=it &

=0.
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If P be within the attracting mass, suppose a small sphere Leplace's
to be described so as to contain P. Divide the potential into equation.
two parts, V, that of the sphere, ¥, that of the rest of the body.

The expression above shows that

V7, =0.
. av .
Also the expredsions for 2z otes in the case of a sphere ()

give V'V, = — 4mp,
where p is the density of the sphere.

Hence as V=V,+7, Poisson’s .
VY =— 4’?’ extension of

which is the general equation of the potential, and includes the
case of P being wholly external to the attracting mass, since
there p=0. In terms of the components of the force, this
equation becomes

dX dY dZ_ 4

-d—x— + @ + 2; = &wp.

d. We have already, in these most important equations,
the means of verifying various former results, and also of adding
new ones,

Thus, to find the attraction of a hollow sphere composed of Potential
concentric shells, each of uniform density, on an external point x:?.%' in
(by which we mean a point not part of the mass). In this case Shborieal”
symmetry shows that ¥ must depend upon the distance from unlm
the centre of the sphere alone. Let the centre of the sphere be %™
origin, and let

r=a'+y 42"
Then ¥ is a function of r alone, and consequently
dV_dVdr zdV

dn dr dzx rdr’
&'V _1d¥V #'dV o d'V

oy 2dV 4V
and v V=; ﬂ"' Tdf—"-.
Hence, when P is outside the sphere, or in the hollow space
within it, 24V d'V_

rdr T At

3—2
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A first integral of this is r"%g =C.

For a point outside the shell C has a finite value, which is easily
seen to be — M, where M is the mass of the shell.

For a point in the internal cavity C' =0, because evidently at
the centre there is no attraction—.e., there =0, ‘;—f: 0 together.

Hence there is no attraction on any point in the cavity.

‘We need not be surprised at the apparent discontinuity of this
solution. It is owing to the discontinuity of the given distribution
of matter. Thus it appears, by § 491 ¢, that the true general
equation of the potential is not what we have taken above, but

d'V 24V _

T rar T
where p, the density of the matter at distance r from the centre,
is zero when 7 < a the radius of the cavity : has a finite value o,
which for simplicity we may consider constant, when » > a and
< a' the radius of the outer bounding surface : and is zero, again,
for all values of r exceeding a’. Hence, integrating from = 0,

—~ 4mp,

to r=r, any value, we have (since r* %—Z =0 when r=0),

av ‘
r'(—F--41rfo pridr=—H,,

if M, denote the whole amount of matter within the spherical
surface of radius »; which is the discontinuous function of »
specified as follows :—

From r=0tor=a, r=ator=d, r=a tor=oo,
M -0, H= 0, M= (@,

The corresponding values of ¥ are, in order,

V =270 (a” - af), V—4—T-a 3a” —r’ - 9'-) V= é’—q (@™ -a").
We have entered thus into delml in this case, beoause such
apparent anomalies are very common in the analytical solution

of physwal questions. To make this still more clear, we sub-
av a'v

_join a graphm representation of the values of ¥, -, and —

dr’ ar
for this case. ABQC, the curve for 7, is partly a straight line,
and has a point of inflection at @ : but there is no discontinuity
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' N dy . Potential
and no abrupt change of direction. OEFD, that for Ir? is of ma g:;m
continuous, but its direction twice changes abruptly. That for s erlcll
o
g consists of three detached portlons, OE, @4, KL. ‘&&.‘i‘é}'
Y B -
A \{.2
_— K

6 For a mass disposed in infinitely long concentric cylin- Coaxal right

f
drical shells, each of uniform density, if the axis of the cylinders ﬁi‘lrédr;:: d
be z, we must evidently have ¥ a function of #* + %* only. {nﬂ:t!ht?
Hence %: 0, or the attraction is wholly perpendicular to the
axis.
Also, 77 - 0; and therefore by ()
& V 1dv
2
vV = Frrar =—4up,
Hence r Q= C—-4n / prar,

from which conclusions snmxlar to the above may be drawn.

. Jo If, finally, the mass be arranged in infinite parallel
planes, each of uniform density, and perpendicular to the axixs
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of z; the resultant force must be parallel to this direction : that
is to say, ¥ =0, Z=0, and therefore
dX

ax 4mp,

which, if p is known in terms of x, is completely integrable.

Outside the mass, p= 0, and therefore

X=0,

or the attraction is the same at all distances, a result easily
verified by the direct methods.

If within the mass the density is constant, we have

X =C"+dmpe;

and if the origin be in the middle of the lamina, we have,
obviously, C’'=0. Hence if ¢ denote the thickness, the values of
X at the two sides and in the spaces beyond are respectively
—2xpt and + 2mpt. The difference of these is 4wpt (§ 478).

g. Since in any case (%7 is the component of the attrac-

tion in the direction of the tangent to the arc s, the attraction
will'be perpendicular to that arc if
av

%=

or V=_C.
This is the equation of an equipotential surface.

If » be the normal to such a surface, measured outwards, the
whole force at any point is evidently
av
dn’
and its direction is that in which ¥ increases.

Integral of 492. Let S be any closed surface, and let O be apomt either
atiraction external or internal, where a mass, m, of matter is collected.

overaclo:

surfice.  Let N be the component of the attraction of m in the direction
of the normal drawn inwards from any point P, of 8. Then, if
do denotes an element of 8, and [ integration over the whole
of it,

JINdo=4mm, or =0 ......ccoevvervnnnn. 1),

according as O is internal or external.
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Case 1, O internal. Let OP,P,F,... be a straight line drawn Integmaof
in any dlrectlon from O, cutting S in B, F,, P, etc, and there- sttration |
fore passing out at P,, in at P,, out again at P in again at P, iy
and so on. Leta oomca.l surface be described by lines through Bt
0, all infinitely near OP,P,..., and let o be its solid angle fammess
(§ 465). The portions of fdea corresponding to the ele- {itn™
ments cut from 8 by this case will be clearly each equal in
absolute magnitude to wm, but will be alternately positive and
negative. Hence as there is an odd number of them their
sum i8 + wm. And the sum of these, for all solid angles round

O is (§ 466) equal to 4mm ; that is to say, [[Ndo = 4rm.

Case 2, O external. Let OPP,P,... be a line drawn from OEqL‘ulent
passing across S, inwards at P,, outwards at P,, and 50 on.eq
Drawing, as before, a conical surface of infinitely small solid
angle, w, we have still am for the absolute value of each of the
portions of [[Ndo corresponding to the elements which it cuts
from 8§; but their signs are alternately negative and positive
and therefore as their number is even, their sum is zero.
Hence [[Ndo =0.

From these results it follows immediately that if there be
any distribution of matter, partly within and partly without a
closed surface S, and N and do be still used with the same
signification, we have

JINdo=4mM........ccccenonn. (2)
if M denote the whole amount of matter within S.

This, with 3 eliminated from it by Poisson’s theorem, § 491 ¢,
is the particular case of the analytical theorem of Chap. 1. App.
A (a), found by taking a=1, and U’ =1, by which it becomes

For let U be the potential at (z, y, ), due to the distribution
of matter in question. Then, according to the meaning of 9,
we have 0/ =~ N, Also, let p be the density of the matter at
(=, v, 2). Then [§ 491 (c)] we have
VT =— 4=p.
Hence (3) gives
[fNdo = 4= [[fpdedydz = 4= M.
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498. If in crossing any surface K we find an abrupt change
in the value of the component force perpendicular to K, it
follows from (2) that there must be a condensation of matter
on K, and that the surface-density of this distribution is N/4er,
if N be the difference of the values of the normal component on
the two sides of K ; as we see by taking for our closed surface
8 an infinitely small rectangular parallelepiped with two of its
faces parallel to K and on opposite sides of it. This result was
found in § 478, in a thoroughly synthetical manner. The same
result is found by the proper analytical interpretation of
Poisson’s equation

dX dY d7Z

ax tayta; S
It is to be remarked that in travelling across K abrupt change
in the value of the component force along any line parallel to
K is forbidden by the Conservation of Energy.

494 The theorem of Laplace and Poisson, § 492, for the
present application most conveniently taken (§ 491¢) in its
differential form

1 d’V oV a4V
pP== (d.v dy t dz* )

is explicitly the solution of the inverse problem,—given the
potential at every point of space, or, which is virtually the same,
given the direction and magnitude of the resultant force at every
point of space,—it 18 required to find the distribution of matter
by which 1t 8 produced.
494 a. Example. Let the potential be given equal to zero
for all space external to a given closed surface S, and let

for all space within this surface; ¢ (x, 7, 2) being any arbitrary
function subject to no other condition than that its value is
zero at S, and that it has no abrupt changes of value within .
Abrupt changes in the values of differential coefficients,

dp dg dp

.dz’ dy' dz’
are not excluded, but are subject to interpretations, as in § 493,
if they occur,
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494 b. The required distribution of matter must include a Tnverse
surface distribution on S, because there is abrupt change in the "~ -
value of the normal component force from

d¢* d¢* de
V/a;+ay+ae
at the inside of S to zero at the outside. Thus, by § 493, and

by § 494 (1), we have for our complete solution (compare §§ 501,
505, 506, 507 below)

p =0, for space external to §'
_ 1 gd¢t det dgn\b
et aptaw) PH @).
: 1 (&' &I I
and P=—4—ﬂ'(d7'+(7?+a.)
for space enclosed by S. J

494¢c. From § 492 (2), remembering that N =0 outside of S,
we infer that the total mass on and within § is zero, and
therefore the quantity of matter condensed on S is equal and
of opposite sign to the quantity enclosed by it.

494 d. Bub-Example. Let the potential be given equal to
zero for all space external to the ellipsoidal surface

x* 2
?*%*?=L
and equal to
z 2*
i(l—;'—%‘:—c_') .................... (3),

for the space enclosed by it : in other words let the potential be
zero wherever the value of (3)is negative, and equal to the value
of (3) wherever it is positive.

494 e¢. The solution (2) becomes

x 2
p=0, wherever;;+"g—:+ c—,>l;
U=-ﬁ’ atthesurfacei—::+%: g:l; «.(4);
'4

s ¢
andp=—1—r —!,+l+l) wherever},+—+—,<l.
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Inverse ? den'oting the perpendicular from the centre to the tangent
proviet plane of the ellipsoidal surface.

404 /. Let ¢ be an infinitely small quintity. The equation

2 e 2
g Fqtd ¢

represents an ellipsoidal surface confocal with the given one,
and infinitely near it. The distance between the two surfaces
infinitely near any point (z, y, 2) of either is easily proved to
be equal to 4 g/p. Calling this ¢, we have, from (4),

We conclude from (6) and (4) and the theorem (§ 494c) of
masses that

Astractions 494 g. The attraction of a homogeneous solid ellipsoid
Somorens- is the. same through all external space as the attraction of a
sodand  homogeneous focaloid* of equal mass coinciding with its

Sorsbed. rf:
focaloid of SuTIACE.
equal mass
found
°Hq“”" ceolds * To avoid complexity of diction we now propose to introduce two new
e words, ¢ focaloid ” and * homoeoid,” according to the following definitions :—
§en..e.{d' (1) A homoeoid is an infinitely thin shell bounded by two similar surfaces
similarly oriented.

The one point which is situated similarly relatively to the two similar
surfaces of a homoeoid is called the homoeoidal centre. Supposing the homoeoid
to be a finite closed surface, the homoeoidal centre may be any internal or
external point. In the extreme case of two equal surfaces, the homoeoidal centre
is at an infinite distance. The homoeoid in this extreme case (which is interest-
ing as representing the sarface-distribution of ideal magnetic matter constituting
the free polarity of a body magnetized uniformly in parallel lines) may be called
& homoeoidal couple. In every case the thickness of the homoeoid is directly
proportional to the perpendicular from the centre to the tangent plane at any
point. When (the surface being still supposed to be finite and closed) the centre
is external, the thickness is essentially negative in some places, and positive in
others.

The bulk of a homoeoid is the excess of the bulk of the part where the
thickness is positive above that where the thickness is negative. The bulk of
a homoeoidal couple is essentially zero. Its moment and its axis are important
qualities, obvious in their geometric definition, and useful in magnetism as
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494h. Take now a homogeneous solid ellipsoid and divide Frootof
it into an infinite number of focaloids, numbered 1, 2, 3, ... Theorem.
from the surface inwards. Take the mass of No. 1 and d.is-
tribute it uniformly through the space enclosed by its inner
boundary. This makes no difference in the attraction through
space external to the original ellipsoid. Take the infinitesimally
increased mass of No. 2 and distribute it uniformly through the
space enclosed by #¢s inner boundary. And so on with Nos. 3, 4,
&c., till instead of the given homogeneous ellipsoid we have
another of the same mass and correspondingly greater density
enclosed by any smaller confocal ellipsoidal surface.

494 :. We conclude that

Any two confocal homogeneous solid ellipsoids of equal Maclaurin's
masses produce equal attraction through all space external to
both.

This is Maclaurin’s splendid theorem. It is tantamount to
the following, which presents it in a form specially interesting
in some respects :

Any two thick or thin confocal focaloids of equal masses, Bqutvalent

each homogeneous, produce equal attraction through all space Maclaurin’s
external to both.

494;j. Maclaurin’s theorem reduces the problem of finding Digression

the attraction of an ellipsoid® on any point in external space, raotion of
(which when attempted by direct integration presents diffi- i
culties not hitherto directly surmounted,) to the problem of

representing the magnetic moment and the magnetio axis of a piece of matter
uniformly magnetized in parallel lines.

(2) An elliptic homoeoid is an infinitely thin shell bounded by two con-
centric similar ellipsoidal surfaces.

(8) A focaloid is an infinitely thin shell bounded by two confocal ellipsoidal
surfaces.

(4) The terms * thick homoeoid” and ¢‘thick focaloid” may be used in
the comparatively rare cases (see for example §§ 494, 519, 522) when forms
satisfying the definitions (1) and (3) except that they are not infinitely thin,
are oonsidered.

* To avoid circumlocutions we call gimply “an ellipsoid ” a homogeneous
solid ellipsoid.
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Digression  finding the attraction of an ellipsoid on a point at its surface
on the at-
traction of Which, as the limiting case of the attraction of an ellipsoid on

w2 el 41 internal point, is easily solved by direct integration, thus:

':gé:g.ﬁh:‘ 494 k. Divide the whole solid into pairs of vertically opposite

an :‘111;1:;0‘21. infinitesimal cones or pyramids, having the attracted point P for

rior point. common vertex.

Let £'PE be any straight line through P, cut by the surface
at £ and £, and let do be the solid angle of the pair of cones
lying along it. The potentials at P of the two are easily shown
to be } PE*do and } PE"™ do, and therefore the whole contribu-
tion of potential at P by the pair is } (PE™ + PE*) do.

Hence, if ¥ denote the potential at P of the whole ellipsoid,
the density being taken as unity, we have

F=[[}(PE*+ PE*) do.........ccccu..... ("),
where [/ denotes integration over a hemisphere of spherical
surface of unit radius.

Now if x, y,  be the co-ordinates of P relative to the
principal axes of the ellipsoid; and /, m, n the direction
cosines of PE, we have, by the equation of the ellipsoid,

(z+IPE)y (y+mPE)' (s+mPE)
P + I + =

c’
whence
Gty eraa(Se ";y+"f)w_(l-£'_/_'_§

When (x, y, z) is within the ellipsoid this equation, viewed as
& quadratic in PF, has its roots of opposite signs; the positive
one is PE, the negative is — PE’

Now if r,, r, be the two roots of gr* + 2fr — ¢ =0, we have

§(r"+70)= (2" +ge)/g"

Hence
P /2% 2N, (2 1
%(PE'+PE")=‘7’7+°)+6'(6' )+ 5(Gre) 0
(g+ml+n!l ’
a5 ?) ®
>
z’ zl .o .
where °=1_?_%:_¢,T"
and Q= 4("2??{&“1&%;;;{
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Now in the [f integration of (7), as we see reothly by taking Digression
for example one of the hemispheres into which the whole sphere tration of
round P is cut by the pla.ne through P perpendicular to 2, it is Pt

clear that

ffy—%”—,;mo ..................... 9);
e I S R

and therefore (7) and (8) give

(297' ) m'(2y’;e L H)
b\ b ¢\
V= ffd F+mi+1£l (10);
(_' v c’)
L @ dd y de L dd
or V—e¢+; —a&'l-z Ib'f'zjd-c— ........... (ll),
where 0:,/] L (12).
m n
e S

404 !. A symmetrical evaluation of ® not being obvious,
we may be content to take

l=cosf, m=sinfcosp, n=sinlsing,
and do =sin 0 df d¢.
Using these, replacing /, and putting

1 1 1 1 1 1
A R (L

2 d¢
we find b= /dl/ Toow g+ Kan' g’
o -4 ® dt 2w
H cos* ¢+Ksm¢ o H+Ke~ J(HK) ‘
Hence
1 dl
d=2 ...(13).
", 11 11,‘!.1_1_1?()
- l?’_;') ¢ (c' a'

By (12) we know that & is a symmetrical function of a, b, c.
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mnum'm.g. To bring (12) to this form, take
traction of
an ellipsoid.

which reduces (13) to

[ du
@=mabe fo I i e S -(15).

The expression (11) for V, with (15) for ®, is worth preserving
for its own sake and for some applications; but the following,
derived from it by performing the indicated differentiations, is
simpler and is generally preferable :

"o ® ¥ & d .
'V=rabc[’ (l IECRED 0'+u)(a R J IS Tt -(16);

or, if M denote the mass of the ellipsoid,

“E(- 4 s ..
a’+u 6’+u ’+u (a* +u)i(b'+u)i(c’+u)§

This, or (16), expresses the potential at any point (=, y, 2)
within the ellipsoid (a, b, ¢) or on its surface.

494 m. The potential at any external point is deduced
from (17) through Maclaurin’s theorem [§§ 494 <] simply by
substituti.ng for a, b, ¢ the semi-axes of the ellipsoid confocal
with (a, b, c¢), and passing through @, y, 2: these semi-axes
are J/(a*+q), N(b'+¢), ¥ (c"+9), where g denotes the positive
root of the equation

« + Y + 2 -
a*+q b'+q +¢q

which is a cubic in g¢. Thus, for an external point, we find

s du
[ ( +q+u b‘+q+u d+g+u, (@ +q+u)‘(b'+q+u)*(c'+q+u)‘

which may be written shorter as follows :

_9M y L2 du
V= / (1 @+u bFru c’+u)(a +u)i(b’+u)*(c‘+u)* ~(20).
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494 n. These formulas, (17) and (20), are, we believe, due Digrossion
to Lejeune Dirichlet, who proves them (Crelle’s Journal, 1846, tn&tlif;m

Vol xxxiv) by showing that they satisfy the equation

d’V d‘V av 4
wrtaptE T
x* '
when ,+‘z: c,<l
and d—'-7+d.z+d1-0
de* " dy' A&
« 2’
when ;,+%:+;,>l;
av dv dv
and that & Ay &
bave equal values at points infinitely near the surface
a:'
";:+z?_l,

outside and inside it. His first step towards this proof (the
completion of which we leave as an exercise to our readers)
is the evaluation of dV/dx, dV/dy, dV/dz. In this it is neces-
sary to remark that, for the external point, terms depending
on the variation of ¢ as it appears in (20) vanish because of
(18): and taking the results which we then get instantly by
plain differentiation, and remembering that X =-dV/dz, &c.,
we have, for the principal components of the resultant force,
x- 3= (* du
t (0" +u)t (B + w) (& + )
y- 34y | ) du .
(@ +u) (0 + )l (& + )
73 " du
v (" +ul (0" +u)l (o + w)b
where ¢ =0 when (z, ¥, z) is internal, and ¢ is the positive root
of the cubic (18), when (=, y, 2) is external.
Using (21) in (20) and (17), we see that
3y j du 3
¢ @+l (B u) (P ud

(21),

(X + Yy + Z2)...(22).
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494 0. For the case of an internal point or a point on
the surface, by putting ¢ =0, we fall back on the original ex-
pressions (16) for ¥V, and the proper differential coefficients )
of it for X, ¥, Z.

These results may be written a,s follows :

X=‘%”az, y-7%y, z-Te)
o , ..(23),
V=<I>—--§ (A" + By* + €2)
where @, &, ¥, € are constants, of which ® is given by (12),
or (18), or (15), and the others_by (21) with ¢=0; all
expressed in terms of elliptic integrals.

It follows that the internal equipotential surfaces are concen-
tric similar ellipsoids with axes proportional to at vl el
and that the internal surfaces of equal resultant force are con-
centric similar ellipsoids with axes proportional to &', 3~', €™,

The external equipotentials are transcendental plinthoids * of
an interesting character. 8o are the equipotentials partly
internal (where they are ellipsoidal) and external (where they
‘are not ellipsoidal).

It is interesting, and useful in helping to draw the external
equipotentials, to remark the following relations between the
internal equipotentials, the external equipotentials, and the
surface of the attracting ellipsoid.

(1) The external equipotential V= C is the envelope of
the series of ellipsoidal surfaces obtained by giving an infinite
number of constant values to ¢ in the equation
j"’(l__i___y_’__ z’) du 4C (a).

" a'+u  b4u  c+u/ (gt u)d(Bu)(c +u)b M

(2) This envelope is cut by the ellipsoidal surface

x* ' 2
a’'+gq Ty + “+q
* From wA\wboedys, brick-like. lethoxd, a8 we now use the term, denotes as
it were a sea-worn brick; any figure with three rectangular axes, and surfaces
everywhere convex, such as an ellipsoid, or a perfectly symmetrical bale of
cotton with slightly rounded sides and rounded edges and corners. One extreme
of plinthoidal figure is a rectangular parallelepiped ; another extreme, just not

excluded by our definition, is a figure composed of two equal and similar right
rectangular pyramids fixed together base to base, that is a ‘‘ regular octohedron.”




494 0] STATICS. 49

for any particular value of ¢ in the line a.long which it is Digression

touched by the particular one of the series of consecutlve
ellipsoidal surfaces (8) corresponding to this value of ¢.

(8) If the ellipsoidal surface (8) be filled with homogeneous
matter, the complete equipotential for any particular value of
C is composed of an interior ellipsoidal surface passing tan-
gentially to the external plinthoidal (but not ellipsoidal) surface
across the transitional line defined in (2).

It is easy to make graphic illustrations for the case of ellip-
soids of revolution, by aid of § 527 below.

494 p. In the case of an elliptic cylinder, which is im- Attraction

portant in many physical investigations, replace M by 4wabc/3, dﬁﬁ:‘*

and put c=c0,

Thus we find
- ® du _ 4wab[J(a'+9)— J(B'+q)]2 ]
X—ﬁmba:/’ (a'+u)' (b’+u)§_ (@ - ¥") J(a* +9)
- 4mabx
@ +g)[J(a'+g)+N(b'+9)]
Y =2xaby f B du _ 4mab[J/(a’+q)-J(¥' + )]y
t (a'+ u)* o+ u)* (& -) (' +9) L..(24).
_ 4waby :
N+ [V(a ) +(B'+9)]
where g=0, whenz: ‘Z—:<l
and g is the positive root of the quadratic
« 2 Y
m+b,—"f+—q=1, whena-,+z,>l. ]

For the case of ¢=0, that is to say, the case of an internal
point, (24) becomes '
4wad 2 4mad y

X=—m E, and Y=a_+b 5 .......... (25).

494 g. For the magnitude of the resultant force we deduce }2 Wh

B=J@+7)=T2  [(Z4Y) ... 20);

VOL. IL 4
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:‘t:m%n and it is remarkable that this is constant for all points on
nitely 1
S35e™  tho surface of the eliptic cylinder %+ %=1, and on cach

similar internal surface, and that its values on different ones
of these surfaces are as their linear magnitudes,

Potentisl in 496 a. At any point of zero force, the potential is & mazimum

free s

cannot have OT & minimum, or & “minimaz.” Now from § 492 (2) it follows

s maximum

gfnll‘::nimum that the potentla.l cannot be a maximum or a minimum
at a point in free space. For if it were so, a closed
surface could be described about the point, and indefinitely
near it, 8o that at every point of it the value of the potential
would be less than, or greater than, that at the point ; so that
N would be negative or positive all over the surface, and there-
fore [[Ndo would be finite, which is impossible, as the surface
encloges none of the attracting mass.

is 8 miai- 495b. Consider, now, & point of zero force in free space :—
pointef  the potential, if it varies at all in the neighbourhood, must be
zero force o e . . .
infre & minimax at the point, because, as has just been proved, it
: cannot be a maximum or a minimum. Hence a material parti-
Eamhnw‘s cle placed at a point of zero force under the action of any
attracting bodies, and free from all constraint, is in unstable

alw}um. equilibrium, a result due to Earnshaw®,

495c. If the potential be constant over a closed surface which
contains none of the attracting mass, it has the same constant
value throughout the interior. For if not, it must have a
maximum or & minimum value somewhere within the surface,
which (§ 495, a) is impossible,

Maanpo- — 496. The mean potentia.l over any spherical surface, due to

smherical matter entirely without it, is equal to the potential at its centre;

tuslte & theorem apparently first given by Gauss. See also Cambridge

centre.  Mauthematical Journal, Feb. 1845 (Vol. 1v. p. 225). It is-one of

the most elementary propositions of spherical harmonic analysis,

applied to potentials, found by applying App. B. (16) to the

formul® of § 539, below. But the following proof taken from

_the paper now referred to is noticeable as independent of the
harmonic expansion.

* Cambdridge Phil. Trans., March, 1839,
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Let, in Chap. 1. App. A. (a), S be a spherical surface, of Mean n po-
radius @ ; and let U be the potential at (z, y, z), due to matter ?:;Lﬂ?ﬂ'
altogether external to it; let U’ be the potential of & unit guu o
of matter uniformly distributed through a smaller concentric ot 1tn
spherical surface ; so that, outside S and to some distance within

it, 0’=1; and lastly, leé a=1. The middle member of App. A
(a) (1) becomes
L 1$00de - f1fUVandyds,

which is equal to zero, since V*U=0 for the whole internal
space, and (§ 492) [foUdo=0. Equating therefore the third
member to zero we have

[JdoUU’ = [[[UV* U'dedydsa.
Now at the surface, S, aU’:-;l,; and for all points external
to the sphere of matter to which U is due, V*U’ =0, and for all

internal points V*U’ =—4xp', if p' be the density of the matter.
Hence the preceding equation becomes

= [[Udo = 4x [[ [ Udedyds.

Let now the density p’ increase without limit, and the spherical
space within which the triple integral extends, therefore become
infinitely small. If we denote by U, the value of U at its centre,
which is also the centre of S, we shall have

[[Ip'Udzdyda= U, [[[p'dudyds=TU,.

Hence the equation becomes
Udo
- f{,’ms =U,
which was to be proved.

The following more elementary proof is preferable:—
imagine any quantity of matter to be uniformly distributed
over the spherical surface. The mutual potential (§ 547 below)
of this and the external mass is the same as if the matter were
condensed from the spherical surface to its centre.

497. If the potential of any masses has a constant value, ¥, Theorem of
through any finite portion, K, of space, unoccupied by matter,
it is equal to ¥ through every part of space which can be reached
' 4—2
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Theoremof in any way without passing through any of those masses: a

pro

Green's
problem.

very remarkable proposmon, due to Gauss, proved thus:—If
the potential differ from V in space contiguous to K, we may,
from any point C within K, as centre, in the neighbourhood of
a place where the potential differs from ¥, describe a spherical
surface not large enough to contain any part of any of the

. attracting masses, nor to include any of the space external

to K except such as has potential all greater than V, or all
less than V. But this is impossible, since we have just seen
(§ 496) that the mean potential over the spherical surface
must be V. Hence the supposition that the potential differs
from ¥ in any place contiguous to K and not including masses,
is false.

498. Similarly we see that in any case of symmetry round
an axis, if the potential is constant through a certain finite
distance, however short, along the axis, it is constant through-
out the whole space that can be reached from this portion of
the axis, without crossing any of the masses. (See § 546, below.)

499. Let S be any finite portion of a surface, or a complete
closed surface, or an infinite surface; and let £ be any point
on 8. (a) It is possible to distribute matter over S so as to
produce, over the whole of 8, potential equal to F(E), any
arbitrary function of the position of E. (b) There is only
one whole quantity of matter, and one distribution of it, which
can do this,

In Chap. 1. App. A. () (¢), eto., let a=1. By (¢) we see that

there is one, and that there is only one, solution of the equation
vU=0

for a.ll points not belonging to .5, subject to the condition that U
shall have a value arbitrarily given over the whole of S. Con-
tinuing to denote by U the solution of this problem, and con-
sidering first the case of .S an open shell, that is to say, a finite
portion of curved surface (including a plane, of course, as a par-
ticular case), let, in Chap. . App. A. (a), U’ be the potential at
(%, ¥, 2) due to a distribution of matter, having = (@) for density
at any point, @. Let the triple integration extend throughout
infinite space, exclusive of the infinitely thm shell S. Although
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in the investigation referred to [App. A. (a)] the triple integral Green’s
extended only through the finite space contained within a closed problea;
surface, the same process shows that we have now, instead of
the second and third members of (1) of that investigation, the
following equated expressions :—
[fdeU" {[s0] - (0)} - [ {ddydsUVT

= [[daU {[a0"] - (30"} - [ [dwdy dsU VD"
where [aU] denotes the rate of variation of U on either side of
S, infinitely near E, reckoned per unit of length from §; and
(2U) denotes the rate of variation of U infinitely near £, on the
other side of S, reckoned per unit of length fowards S; and
[8U"], (3U") denote the same for U’. Now we shall suppose the
matter of which U’ is the potential not to be condensed in finite
quantities on any finite areas of S, which will make

[0 = (aU"):
and the conditions defining U and U’ give, throughout the space
of the triple integral,

VU=0, and VU’ = — 4w ;

w denoting the value of w (@) when @ is the point-(z, g, 2).
Hence the preceding equation becomes

Let now the matter of which U’ is the potential be equal in
amount to unity and be confined to an infinitely small space
round a point Q. 'We shall have

Jf[dzdydemU=TU (Q) [[[wdzdyds=TU (Q),
if we denote the value of U at (@) by U (@):
1

8]80 U'=—-

£Q
Hence (1) becomes
oU]- (@
If [_U]ETQ(_U) do = 42T (Q).rnvvvrrreen. @)
Hence a distribution of matter over S, having reduced to .
the el:-:.iw
1 goner
o 17 X G170} SRS (3) poutionot
equation.

for density at the point Z, gives U as its potential at (=, y, 2).
‘We conclude, therefore, that it is possible to find one, but only
one, distribution of matter over § which shall produce an arbi-
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trarily given potential, F (), over the whole of §; and in (2)
we have the solution of this problem, when the problem of find-
ing U to fulfil the conditions stated above, has been solved.

If S is any finite closed surface, any group of surfaces, open or
closed, or an infinite surface, the same conclusions clearly hold.
The triple integration used in thé investigation must then be
separately carried out through all the portions of space separated
from one another by S, or by portions of S.

If the solution, p, of the problem has been obtained for the case -
in which the arbitrary function is the potential at any point of S,
due to a unit of matter at any point P not belonging to S, that
is to say, for the case of F (E) =2,}7,,
problem was shown by Green to be deducible from it thus :—

U= [fpF (B)do.....oocrerereen. .- .

The proof is obvious : For let, for a moment, p denote the super-
ficial density required to produce U, then o’ demoting the value
of p for any other element, ', of S, we have

F(B)= / pda’
Hence the preceding double integral beeomes
Jfdap[[de’ g, o {fdd’ [ [do 3,7

the solution of the general

But, by the definition of p,
1
I f do - E’ E E’ Pt vesssee seesersne (5) H
and tkerefore
JIeF(E) do = [fdo' 7 "’ ................ (6).

The second member of this is equal to U, according to the
definition of p.

The expression (46) of App. B., from which the spherical har-
monic expansion of an arbitrary function was derived, is a case
of the general result (4) now proved.

Iolstionot  800. It is important to remark that, if S consist, in part, of
a closed surface, @, the determination of U within it will be
independent of those portions of 8, if any, which lie without
it; and, vice versa, the determination of U through external

effect by

closed por-

tion of
surface,
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space will be independent of those portions of S, if any, which olation of
lie within Q. Or if S consist, in part, of a surface Q, ex- ot por-
tending infinitely in all directions, the determination of U ourin.
through all space on either side of @, is independent of those
portions of §, if any, which lie on the other side. This follows

from the preceding investigation, modified by confining the

triple integration to one of the two portions of space separated
completely from one another by Q.

501. Another remark of extreme importance is ‘this :—If oo |
F(E) be the potential at £ of any distribution, M, of matter, e_fmlw'm»
and if S be such as to separate perfectly any portion or portions fribation of
of space, H, from all of this matter; that is to say, such that X ‘;‘%‘.}:‘?"'
it is impossible to pass into H from any part of M without &9“&8""
crossing S; then, throughout H, the value of U will be the

potential of M,

For if ¥ denote this potential, we have, throughout H, v'V'=0;
and at every point of the boundary of H, V=F(E). Hence,
considering the theorem of Chap. 1. App. A. (¢), for the space H
alone, and its boundary alone, instead of .S, we see that, through
this space, ¥ satisfies the conditions prescribed for U, and there-
fore, through this space, U= 7.

Solved Exzamples. (1) Let M be a homogeneous solid ellip-
soid ; and let S be the bounding surface, or any of the external
ellipsoidal surfaces confocal with it. The required surface-
density is proved in § 494 g to be wnversely proportional to
the perpendicular from the centre to the tangent-plane; or,
which is the same, directly proportional to the distance between
S and another confocal ellipsoid surface infinitely near it. I
other words, the attraction of a focaloid (§ 494 g, foot-note) of Virtuanty
homogeneous matter is, for all points external to it, the same il
as that of a homogeneous solid of equal mass bounded by any e
confocal ellipsoid interior to it. '

(2) Let M be an elliptic homoeoid (§ 494 g, foot-note) of Blliptie
homogeneous matter; and let S be any external confocal-nmmpl&
elhpsoxda.l surface. The required surface-density is proved the roduci-
in § 519 below to be directly proportional to the perpen- am“
dicular from the centre to the tangent-plane; and, which is problem.
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the same, directly proportional to the distance between S and
a similar concentric ellipsoidal surface infinitely near it. In
other words, the attractions of confocal infinitely thin elliptic
homoeoids of homogeneous matter are the same for all external
points, if their masses are equal.

502. To illustrate more complicated applications of § 501,
let 8 consist of three detached surfaces, 8, 8,, §,, as in the
diagram, of which 8|, 8, are closed, and S, is an open shell, and if

_ F(E) be the potential due to M, at any point, E, of any of these

Snmulhno-

inﬂuenca-l

portions of §; then throughout
H,, and H,, the spaces within
S, and without S,, the value of
U is simply the potential of M.
The value of U through K, the
remainder of space, depends, of
course, on the character of the
composite surface S, and is a
case of the general problem of which the solution was proved
to be possible and single in Chap. 1. App. A.

503. From § 500 follows the grand proposition:—1I¢ s
possible to find one, but no other than one, distribution of matter
over a surface S which shall produce over S, and throughout all
space H separated by S from every part of M, the same potential
as any given mass M.

Thus, in the preceding diagram, it is possible to find one,
and but one, distribution of matter over 8,, &,, S, which shall
produce over S, and through H, and H, the same potential
as M. ,

The statement of this proposition most commonly made is:
It 78 possible to distribute matter over any surface, S, completely
enclosing a mass M, so as to produce the same potential as M
through all space outside S; which, though seemingly more
limited, is, when interpreted with proper mathematical com-
prehensiveness, equivalent to the foregoing.

504. If S consist of several closed or infinite surfaces, S|, 8,, S,,
respectively separating certain isolated spaces H,, H,, H,, from



504.) STATICS. 57

H, the remainder of all space, and if F'(E) be the potential s m 1y
of masses m,, m,, m,, lying in the spaces H,, H,, H,; the por- ¢ n{ -
tions of U due to 8,, S,, S,, respectively will throughout H be fus. ki
equal respectively to the potentials of m,, m,, m,, separately.

For as we have just seen, it is possible to find one, but only

one, distribution of matter over 8, which shall produce the
potential of m,, throughout all the space H,, H,, H,, etc., and
one, but only one, distribution
over 8, which shall produce the
potential of m, throughout H,
H,, H, etc.; and so on. But
these distributions on 8, S,,
etc., jointly constitute a distri-
bution producing the potential
F(E) over every part of 8, and
therefore the sum of the potentials due to them all, at any
point, fulfils the conditions presented for U. This is therefore
(§ 503) the solution of the problem.

B05. Considering still the case in which F'(E) is prescribed Reducible
to be the potential of a given mass, M: let S be an equipotential Srem;
surface enclosing M, or a group of isolated surfaces enclosing
all the parts of M, and each equipotential for the whole of M.

The potential due to the supposed distribution over S will be
the same as that of M, through all external space, and will
be constant (§ 497) through each enclosed portion of space. Its
resultant attraction will therefore be the same as that of M on
all external points, and zero on all internal points. Hence we
see at once that the density of the matter distributed over it,
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to produce F(E), is equal to 3o where B denotes the resultant

force of M, at the point E.

We have [0U]=-R and (3U)=0. Using this in § 500 (2),
we find the preceding formula for the required surface-density.

506. Considering still the case of §§ 501, 505, let S be the
equipotential not of M alone, as in § 503, but of M and another
mass m completely separated by it from M; so that V+v=C
at 8, if ¥ and v denote the potentials of M and m respectively.

The potential of the supposed distribution of matter on &8,
which, (§ 501), is equal to V through all space separated from M
by 8, is equal to C—v at S, and therefore equal to C—v
throughout the space separated from m by 8.

Thus, passing from potentials to attractions, we see that the
resultant attraction of S alone, on all points on one side of it
is the same as that of M ; and on the other side is equal and
opposite to that of m. The most direct and simple complete
statement of this result is as follows : —

If masses m, m’, in portions of space, H, H’, completely
separated from one another by one continuous surface £, whether
closed or infinite, are known to produce tangential forces equal
and in the same direction at each point of S, one and the same
distribution of matter over S will produce the force of m
throughout H’, and that of m’ throughout H. The density of

this distribution is equal to 4%_ , if B denote the resultant force
due to one of the masses, and the other with its sign changed.
And it is to be remarked that the direction of this resultant
force is, at every point, E, of S, perpendioular to S, since the

potentm.l due to one mass, and the other w.tth its sign changed,
is constant over the whole of S.

807. Green, in first publishing his discovery of the result
stated in § 505, remarked that it shows a way to find an in-
finite variety of closed surfaces for any one of which we can
solve the problem of determmmg the distribution of matter
over it which shall produce a given uniform potential at each
point of its surface, and consequently the same also throughout
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its interior, Thus, an example which Green himself gives, let Reducible
M be a uniform bar of matter, A4’. The equipotential surfaces G,d"ﬁ:l"
round it are, as we have seen above (§ 481 ¢), prolate ellipsoids exampies.
of revolution, each having A and A’ for its foci; and the re-
sultant force at any point P was found to be

mp
IP-a) a’) ’
the whole mass of the bar being denoted by m, and its length
by 2a; A’P+ AP by 2l; and the perpéndicular from the
centre to the tangent plane at P of the ellipsoid, by p. We
conclude that a distribution of matter over the surface of the
ellipsoid, having

—

1 mp

dr I(P=-a)
for density at P, produces on all external space the same re-
sultant force a8 the bar, and zero force or a constant potential
through the internal spaee. This is a particular case of the
Example (2) § 501 above, founded on the general result regard-
ing ellipsoidal homoeoids proved below, in § 519, 520, 521.

508. As a second example, let M consist of two equal par-
ticles, at points I, I'. If we take the mass of each as unity,
. .1 1

the potential at P is Pt P’ and therefore

1 1

_ 1t rp

is the equation of an equipotential surface ; it being understood

that negative values of JP and I'P are inadmissible, and that

any constant value, from o to 0, may be given to C. The

curves in the annexed diagram have been drawn, from this

equation, for the cases of C' equal respectively to 10, 9, 8, 7, 6,

5, 45, 43, 42, 41, 4, 39, 38, 37, 85, 8, 25, 2; the value of
II’ being unity.

=C

The corresponding equipetential surfaces are the surfaces
traced by these curves, if the whole diagram is made to rotate
round I’ as axis, Thus we see that for any values of C less
than 4 the equipotential surface is one closed surface. Choosing
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Reduitle any one of these surfaces, let B denote the resultant of forces

Sei5 equal to 11, and piz in the lines PT and PI. Then if

T

matter be distributed over this surface, with density at P equal
to 415;, its attraction on any internal point will be zero; and on

any external point, will be the same as that of I and 1.

509. For each value of C' greater than 4, the equipotential
surface consists of two detached ovals approximating (the last
three or four in the diagram, very closely) to spherical surfaces,
with centres lying between the points I and I, but approxi-
mating more and more closely to these points, for larger and
larger values of C.

Considering one of these ovals alone, one of the series en-
closing I, for instance, and distributing matter over it according

to the same law of density, Zlgr , we have a shell of matter

which exerts (§ 507) on external points the same force as I’; and
on internal points a force equal and opposite to that of 1.
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510. As an example of exceedingly great importance in the lectrio
theory of electricity, let M consist of a positive mass, m, con-
centrated at a point I, and a
negative mass, —m’, at I'; and
let 8 be a spherical surface

cutting II’, and I’ produced 4 07
in points 4, 4,, such that

TA: A ::JA,:I'A,::m:m. U
Then, by a well-known geo-

metrical proposition, we shall have JE : I'E :: m : m’; and
therefore

m m

IE~TE
Hence, by what we have just seen, one and the same distribu-
tion of matter over 8 will produce the same force as m’ through
all external space, and the same as m through all the space

within 8. And, finding the resultant of the forces % in EI,

and 7% in T'E produced, which, as these forces are inversely
as IE to I'E, is (§ 256) equal to
sy
w5 o mn{'I T}?'

we conclude that the density in the shell at £ is

w1

4mm’' ° IE*’
That the shell thus constituted does attract external points as

if its mass were collected at I, and internal points as a certain
mass collected at I, was proved geometrically in § 474 above.

511. If the spherical surface is given, and one of the points,
L I, for instance I, the other is found by taking CI'= o4’

oI’
and for the mass to be placed at it we have

wemld om 4Ol
=mAr=mer="ca

Hence if we have any number of particles m,, m,, etc., at points
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Eeotric I, I, etc., situated without S, we may find in the same way
corresponding internal points I, I, etc., and masses m,, m/,
ete.; and, by adding the expressions for the density at E given
for each pair by the preceding formula, we get a spherical shell
of matter which has the property of acting on all external space
with the same force as —m,/, —m/, etc., and on all internal
points with a force equal and opposite to that of m,, m,, ete.

612. An infinite number of such particles may be given,
constituting a continuous mass M; when of course the corre-
sponding internal particles will constitute a continuous mass,
—M’, of the opposite kind of matter; and the same conclusion
will hold. If § is the surface of a solid or hollow metal ball
connected with the earth by a fine wire, and M an external
influencing body, the shell of matter we have determined is
precisely the distribution of electricity on § called out by the
influence of M: and the mass — M’, determined as above, is
called the Electric Image of M in the ball, since the electric
action through the whole space external to the ball would be
unchanged if the ball were removed and — M’ properly placed
in the space left vacant. We intend to return to this subject
under Electricity.

Trane-  B13. Irrespectively of the spetial electric application, this
by recipro- method of images gives a remarkable kind of transformation
vectors.  which is often useful. It suggests for mere geometry what
has been called the transformation by reciprocal radius-vectors;
that is to say, the substitution for any set of points, or for any
diagram of lines or surfaces, another obtained by drawing radii
to them from a certain fixed point or origin, and measuring off
lengths inversely proportional to these radii along their direc-
tions. We see in a moment by elementary geometry that any
line thus obtained cuts the radius-vector through any point of
it at the same angle and in the same plane as the line from
which it is derived. Hence any two lines or surfaces that cut
one another give two transformed lines or surfaces cutting at
the same angle: and infinitely small lengths, areas, and volumes
transform into others whose magnitudes are altered respectively
in the ratios of the first, second, and third powers of the distances
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of the latter from the origin, to the same powers of the distances Trans-

of the former from the same. Hence the lengths, areas, and by recipro-
volumes in the transformed diagram, corresponding to a set vectors.
of given equal infinitely small lengths, areas, and volumes, how-

ever situated, at different distances from the origin, are in-

versely as the squares, the fourth powers and the sixth powers

of these distances. Further, it is easily proved that a straight

line and a plane transform into a circle and a spherical surface,

each passing through the origin; and that, generally, circles

and spheres transform into circles and spheres.

614 In the theory of attraction, the transformation of
masses, densities, and potentials has also to be considered.
Thus, according to the foundation of the method (§ 512), equal
masses, of infinitely small dimensions at different distances
from the origin, transform into masses inversely as these dis-
tances, or directly as the transformed distances: and, therefore,
equal densities of lines, of surfaces, and of solids, given at any
stated distances from the origin, transform into densities directly
as the first, the third, and the fifth powers of those distances;
or inversely as the same powers of the distances, from the
origin, of the corresponding points in the transformed system.

615. The statements of the last two sections, so far as General
proportions alone are concerned, are most conveniently ex- of ratios
pressed thus:—

Let P be any point whatever of a geometrical diagram, or
of a distribution of matter, O one particular point (*the
origin ), and a one particular length (the radius of the “ reflect-
ing sphere”). In OP take a point P’, corresponding to P, and
for any mass m, in any infinitely small part of the given dis-
tribution, place a mass m’; fulfilling the conditions

. a' ;G OP

OP'=W, m=ppm=—"—m.
Then if L, 4, V, p(L), p(4), p(V) denote an infinitely small
length, area, volume, linear-density, surface-density, volume-
density in the given distribution, infinitely near to P, or
anywhere at the same distance, 7, from O as P, and if the
corresponding elements in. the transformed diagram or dis-
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Seneral | tribution be denoted in the same way with the addition of
of ratics.  accents, we have

2 %] 4 /4 (]
D=5Ll=5L; 4=54="04; V=57="107,

-]

PO =2oD)=2p); p(4)=Sp ()= T p (4);

’ 3 ,.5
P (V)=%P(V)=Esp(1’)-

The usefulness of this transformation in the theory of electricity,
and of attraction in general, depends entirely on the following

theorem :—
Appliation 516, (Theorem.)—Let ¢ denote the potential at P due to

potential. the given distribution, and ¢’ the potential at P’ due to the
transformed distribution : then shall

, T a
$=-b=5¢
Let a mass m collected at I be any part of the given dis-
tribution, and let =’ at I”
. . be the corresponding part
Y7, in the transformed distri-
bution. We have
a'=0I' . 0I =0P. OP,
A and therefore
o I I or.op:op.:or;
which shows that the triangles IP 0, P'I'0 are similar, so that

IP.PI' :: JOI.OP : \JOP.OT :: OI.OP:a*
We have besides

m:m' :: OI : a,

and therefore

m _ m
H) H I,—F :a: OP
Hence each term of ¢ bears to the corresponding term of ¢’
the same ratio; and therefore the sum, ¢, must be to the sum,
¢’, in that ratio, as was to be proved.
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617. As an example, let the given distribution be con- An

bnﬁm;
fined to a spherical surface, and let O be its centre and a its Spherionl
radius. The transformed distribution is the same. But the
space within it becomes transformed into the space without
it. Hence if ¢ be the potential due to any spherical shell at
a point P, within it, the potential due to the same shell at the

2
point P in OP produced till OP' =7, is equal to 57 ¢
(which is an elementary proposition in the spherical harmonic
treatment of potentials, as we shall seé presently). Thus, for
instance, let the distribution be uniform. Then, as we know
there is no force on an interior point, ¢ must be constant; and
therefore the potential at P, any external point, is inversely
proportional to its distance from the centre.

Or let the given distribution be a uniform shell, S, and let O Uniform
be any eccentric or any external point. The transformed dis- srieaily re-
tribution becomes (§§ 518, 514) a spherical shell, §’, with
density varying inversely as the cube of the distance from O.
If O is within §, it is also enclosed by &, and the whole space
within § transforms into the whole space without §. Hence
(§ 516) the potential of S’ at any point without it is'inversely
as the distance from O, and is therefore that of a certain quan-
tity of matter collected at O. Or if O is external to S, and
consequently also external to §’, the space within 8 transforms
into the space within 8’. Hence the potential of S’ at any
point within it is the same as that of a certain quantity of
matter collected at 0, which is now a point external to it.
Thus, without taking advantage of the general theorems
(§§ 499, 506), we fall back on the same results as we inferred
from them in § 510, and as we proved synthetically earlier
(8§ 471, 474, 475). It may be remarked that those synthetical
demonstrations consist merely of transformations of Newton’s
demonstration, that attractions balance on a point within a
uniform shell. Thus the first of them (§ 471) is the image of
Newton’s in a concentric spherical surface ; and the second is
its image in a spherical surface having its centre external to
the shell, or internal but eccentric, according as the first or the
second diagram is used,

VOL. IL 5
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Unitorm 618. We shall give just one other application of the theorem

soosntn ™ of § 516 at present, but much use of it will be made later, in
Secied.  the theory of Electricity.

Let the given distribution of matter be a uniform solid
sphere, B, and let O be external to it. The transformed system
will be a solid sphere, B, with density varying inversely as
the fifth power of the distance from O, a point external to it.
The potential of B is the same throughout external space as
that due to its mass, m, collected at its centre, C. Hence the
potential of B’ through space external to it is the same as that
of the corresponding quantity of matter collected at (', the
transformed position of C. This quantity is of course equal
to the mass of B. And it is easily proved that C is the posi-
tion of the image of O in the spherical surface of B. We
conclude that a solid sphere with density varying inversely
as the fifth power of the distance from an external point, O,
attracts any external point as if its mass were condensed at
the image of O in its external surface. It is easy to verify
this for points of the axis by direct integration, and thence the
general conclusion follows according to § 490.

Sooond In- 619. One other application of Green’s great theorem of

ofsttrso-  § 503, showing us a way to find the potential and the resultant
ellipoid.  force at any point within or without an elliptic homoeoid, from
which we are led to a second very interesting solution of the
problem of finding the attraction of an ellipsoid differing

greatly from that of § 494, we shall now give.
An elliptic homoeoid exercises no force on internal points.

Elliptio To prove this, let the infinitely thin spherical shell of § 462,
exertavero imagined as bounded by concentric spherical surfaces, be dis-
internal - torted (§§ 158, 160) by simple extensions and compressions
" in three rectangular directions, so as to become an elliptic
homoeoid. In this distorted form, the volumes of all parts are
diminished or increased in the proportion of the volume of the
ellipsoid to the volume of the sphere; and (§ 158) the ratio of
the lines HP, PK is unaltered. Hence the elements ITH, KL,
still attract P equally ; and therefore, as in § 462, we conclude
that the resultant force on an internal point is zero.
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It follows immediately that the attraction on any pOIDttheonm
in the hollow space within a homoeoid not infinitely thin is Newtan.
zero. This proposition is due originally to Newton.

620. In passing it may be remarked that the distribution of Distribu-
electricity on an ellipsoidal conductor, undisturbed by electric e}‘eoem;i‘ty
influence, is thus proved to be in simple proportion to the soidai con-
thickness of a homoeoid coincident with its surface, and there-
fore (§ 494, foot-note) directly proportional to the perpendicular

from the centre to the tangent plane.

521. From § 519 and § 478 it follows that the resultant rorce
force on an external point anywhere infinitely near the homoeoid m;lno
is perpendicular to the surface, and is equal to 4r¢, if ¢ denote o
the thickness of the shell in that neighbourhood (its density
being taken as unity). It follows also from § 519 that the
potential is constant throughout the interior.of the homoeoid
and over its surface. Hence the distance from this surface
to another equipotential infinitely near it outside is inversely
proportional to ¢; and therefore (§ 494) this second surface
is ellipsoidal and confocal with the first. By supposing the
proper distribution of matter (§ 505) placed on this second
surface to produce over it, and through its interior, its uniform
potential, we see in the same way that the third equipotential
infinitely near it outside is ellipsoidal and confocal with it;
and similarly again that a fourth equipotential is an ellipsoidal
surface confocal with the third, and so on. Thus we conclude
that the equipotentials external to the original homoeoid are
the whole series of external confocal ellipsoidal surfaces.

622. From this theorem it follows immediately that any Digreasion.
Second
two confocal homoeoids of equal masses produce the same proofor

attraction on all points external to both. And from this (as theorem.
pointed out by Chasles, Journal de T Ecole Polytechnique, 25
Cahier, Paris, 1837) follows immediately Maclaurin’s theorem
thus :—Consider two thick homoeoids having the outer surfaces
confocal, and also their inner surfaces confocal. Divide one
of them into an infinite number of similar homoeoids; and
divide the other in a corresponding manner, so that each of
its homoeoidal parts shall be confocal with the corresponding

5—2



ngmulon.

Magnitude
and direc-
tion of
attraction
of elliptie
homoeoid
on eztamal
point, ex-
reased

,s’nalytieslly.

68 ABSTRACT DYNAMICS. [522.

one of the first. These two thick homoeoids produce the same
, force on any point external to both. Now let the hollow of
* one of them, and therefore also the hollow of the other, become
infinitely small ; we have two solid confocal ellipsoids, and it is
proved that they exert the same force on all points external
to both.

623. A beautiful geometric proof of the theorem of § 521
due to Chasles, is given below, § 532. The proof given in
§ 521 is from Thomson’s “Electrostatics and Magnetism ”
(§ 812, reprinted from Camb Math. Jour, Feb. 1842).
The theorem itself is due to Poisson, who proved (in the Con-
naissance des Temps for 1837, published in 1834%) that the
resultant force of a homoeoid on an external point is in the
direction of the interior axis of the tangential elliptic cone
through the attracted point circumscribed about the homoeoid ;
for it is a known geometrical proposition, easily proved, that
the three axes of the tangential cone are normal to the three
confocal surfaces, ellipsoid, hyperboloid of one sheet, and hyper-
boloid of two sheets, through its vertex.

524, The magnitude of the resultant force is equal to 4o,
where 7 denotes the thickness of the confocal homoeoid equal in
bulk to the given homoeoid.

To express the magnitude and direction symbolically, let
abe be the semi-axes of the given homoeoid, and afy those of the
confocal one through P the attracted point; and let p, ¢ and
@, T be the perpendiculars from the centre to the tangent planes,
and the thicknesses, at any point of the given homoeoid, and at
the point P of the other. The volumes of the two homoeoids
are respectively

4wabet/p, and 4waByr/w;

hence
be ¢
dar=4n 2l @ e ,
ar =4 By p w (1)
and therefore the resultant force is
abe ¢
4T — Wittt 2
Tapyp” . @)

* Bee Todhunter's History of the Mathematical Theories of Attraction and
the Figure of the Earth, Vol. 11, Articles 1891—14135,
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Supposmg the rectangular co-ordinates of the attracted point Hnitudo

xyz given ; to find aBy we have tionof
a?=a"+A; B =b"+L; Y=C+Aerrrrnn. (8), gfeliptie
al
where A is the positive root of the equation :pgi::fe:xl:
z* ,'I’ 2 snalytically.
a'+)t+bP+A+c"+x—1 .................. (4),

these equations expressing the condition that the two ellipsoidal
surfaces are confocal.

To. complete the analytical expression remark that
wx w3
= %,3, e (5)
are the direction-cosines of the line of the resultant force.

5256. To find the potential at any point remark that the Potential of
difference of potentials at two of the external equipotential sur- Bomoeid
faces infinitely little distant from one another is (§ 486) equal to ¢ pod:4 oi:t
the product of the resultant force at any point into the distance fo found,
between the two equipotentials in its neighbourhood. Hence,
taking the potential as zero at an infinite distance (§ 485), we
find by summation (a single integration) the potential at any
point external to the given homoeoid. Now let

@ jde, y+idy, z+ide

be the co-ordinates of the two points infinitely near one another,
on two confocal surfaces. The distance between the two surfaces
in the neighbourhood of this pomt is

zr
m (k b. T A. dy + .ndz ............. (6).

Let now the squares of the semi-axes of these surfaces be
@'+ Ak ddl; B +A=ddh; o + A idA.
Now by differentiation of (4) we have
adx ydy zdz

2 F AT E AT I
o y i a
= {(G'-I-A)’ + (b'+ A). + (c!+ A)l} dA=? ......... (7).

2%
Hence (6) becomes e
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Hence, and by § 525 above, and by (2) of § 524 we have
dv=- 2,% L PN @®).
Hence, and by (3) of § 524,
=2y ¢t dA - (9),

? lo@+ @+t @+at

where o denotes that the constant is so assignmed as to render
the value of the integral zero when A =0,

626. Having now found the potential of an elliptic homoeoid,
and its resultant force at any point external or internal, we
can, by simple integration, find the potential and the resultant
force of a homogeneous ellipsoid, or of a heterogeneous ellipsoid
with, for its surfaces of equal density, similar concentric ellip-
soidal surfaces. To do this we have only to divide the ellipsoid
into elliptic homoeoids, and find the potential of each by (9),
and the potential of the whole by summation ; and again find
the rectangular components of the force of each by (2) and (5);
and from this by summation® the rectangular components of
the required resultant.

Let abe be the semi-axes of the whole ellipsoid. Let 6a, 6b, 6c,
be the semi-axes of the middle surface of one of the interior
homoeoids; and

(6=3d6)a, (0=1d0)d, (6=3db)ec

those of its outer and inner bounding surfaces. From the
general definition of a homoeoid, elliptic or not, it follows imme-
diately that t/p = d8/6. Let now p, a given function of 6, be the
density of the ellipsoid in the homoeoidal stratumn corresponding
to 6. Hence by (9) remembering that the density there was
taken as unity, and putting 6a, 6b, 6c in place of a, b, ¢, we find
for the potential of the homoeoid 6= }df the following expres-
sion,

- 2'rabco'pd0 dd

w(6%ar+ DY (6% + )} (07" + )}

* Chasles, ‘*Nouvelle solution du probldme de l’attraction d'un ellipsoide
hétérogene sur un point extérieur” (Liouville’s Journal, Deo. 1840). Also W.
Thomson, “ On the Uniform Motion of Heat in Solid Bodies, and its connection

with the Mathematical Theory of Electricity, Electrostatics and Magnetism,”
§ 21—24. (Reprinted from Cambridge Mathematical Journal, Feb. 1842.)
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where { is introduced as the variable of the definite integration, Synthesis of
because A is presently to be made a function of §. Hence if B
denote the potential of the whole ellipsoid, we have

@
V=—2wxabc| ¢ 0 ...... 11
f P o(@a+ )} (6% + O @+ ) .
where A is a function of 6 given by the equation

z v '
m +-o;b,+—x+m=l ............... (12).

The expression (11) is simplified by introducing, instead of 6
or A, another variable A/¢*. Calling this %, so that

A= 0% vereerererereeirennesenese e (13),
we have by (12)
o v 2
o.=a'+u+b'+u+c’+u .................. (14).
By differentiation of (12) we have Potential
d\ 2 Y 2 o'z’ by i3 eous
@) [(“Fu) Tt (——c’+u)'] =" [(a’+u)’+ T+ T @+ ] e

And from (13) du = [ df% ]d(o')

‘Whenoe, on using (14), we find

_ '3 y 2 .
— 26db= [(a' +u)t + (&' +u) + (¢ + u)‘] w
Then changing the variable of integration in the function under
the second integral sign in (11) from { to {/6", and writing « for
{/6°, we find by means of these transformations,

r= "'b"f:"d * { a'fu)’+(b' Z’u)'J'(a’ i’u)’}f.g. (@*+u)t (b:i:‘u)*(e,-'m)*I

..................... 15),
where ¢ is the pogitive root of the equation
« Yy 2
a’+q+b'+q+c"+g—l ............... (16).

For the case of uniform density in which we may put p=1,
this becomes simplified by integration by parts, thus :

[ e [ S dum— i [ dus [ f0)
~ oy [F@ - [
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Putting for C successively a', 8", ¢*, using the result properly in
(15), and taking aocount of (16), and putting

Swabe=M ........ccoeovvnnninnnnnnn an),
wo find
V=§_l_{/‘°<l_ & 2 du
4 J, a'+u b+u +u (a’+u)§(b’+u)§(c'+u)‘
————— (18),
which agrees with § 494 above.

Just as we have found (15), we find from (2), (5), (13), and (14),
the following expression for the wx-components of the resultarit’
force and the symmetricals for the y- and z-components:

3z pdu
X P [(a’+u)’(b'+u)3(¢'+u)§ ............... (19),

where p, a function of 6, is reduced to a function of » by (14).

For the case of a homogeneous ellipsoid (p =1), these results
become (20) and (21) of § 494. As there they were for external
points deduced by aid of Maclaurin’s theorem from the attraction
of an ellipsoid on a point at its surface, 80 now when proved other-
wise they contain a proof of Maclaurin’s theorem. This we see
in a moment by putting w =w + ¢ in the integrals, which makes
the limits =0 and w=o.

627. In the case of a homogeneous ellipsoid of revolution
the integrals expressing the potential and the force-components
(which for a homogeneous ellipsoid, in general, are elliptic inte-
grals) are reduced to algebraic and trigonometrical forms, thus:
letb=cand 2=0.

‘We have
- 3M (® du
V=— -} (Xz+ Yy)......... 20
T), m 3( ) (20),
M du
=z —mMm
27N+ )@+ )t @
sip oo 21),
Y=—2_yf‘ 3 2/, i
7 (b +u)'(a’+w)
To reduce these put
. b — ot
Pru=—p e (22):

¢
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which reduces the three integrals to 2/(3"—a")}. fdf/(l—é')*,

2/*—a)t. fe-de/(l_g)', and 2/(¢*—ant. fe'de/ (1-£9}; and

makes the limits in each of them
b - a’
$=‘-'0 to $= \/Tq..
We thus find Potential
34 b -a pay  Honof
= ————'&m —i(xzi' Yy) ............... (..3), homo-
2(*-d) Sllipsoid of
Xe 3Mx { b’_a'_tan"l b — .} revolution:
(b’—a’)‘ a'+q a'+q
. s e e, b [ o-(24),  oblate:
SMy {tm“ Jb -a'_ ('-a")’(a +q)}
2 (b' a')! a'+ q b+ q J

where, for any external point, ¢ is the positive root of the
equation
< ¥
d—'+_q + ‘b'—"‘-‘_q = 1 evesessnscentctncnes (25),
z and y denoting the co-ordinates of the attracted point respec-
tively along and perpendicular to the axis of revolution, and
for any internal point or for points on the surface ¢ =0.

Formulas (23) and (24) realized for the case of a > b become

e A 8,
_ 8Mx { J@ -8+ J@+q) _ Jfa'-b
@ - U8 g @ +g
po Sy {w-b-)*(a L Y, o Y, G +2) e
2 (&'~ bl)' b'+q N +9)

The structure of these expressions (23), (24), (26), (27), is
eluvidated, and calculation of results from them is facilitated
by taking

f= J’:,_:’; , and /(B =a%) =T.verrrnrane. (8),

and again °'J%:;+:’ and J(@® =5 = 8o, (29);
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prolate.  which reduces them to the following alternative forms :—

Ve e~} (Xa+ Fy)= o log /10~ § (Xo+ ) ..(30),

X222 (s taami ) 22 (-0 1“)

wy(t‘m-'f 1+f') ‘wy(lea log }%c)

Then, for determining f or e, in the case of an external point,
(25) becomes

j’(w'+-i:y.7,)=r', and ¢ (- L2)=n(3)

In the case of an internal point we have
'
f—JV L " ................. (33).

628. The investigation of the attraction of an ellipsoid
which was most popular in England 40 to 50 years ago re-
sembled that of § 494 above, in finding the attraction of an
internal point by direct integration, substantially the same as
that of § 494, and deducing from the result the attraction of
an external point by a special theorem.

Thirdin-  But the theorem then popularly used for the purpose was

of the not Maclaurin’s theorem, which was little known, strange
Elt:f.n ™" to say, in England at that time; it was Ivory’s theorem, much
lpsoid.

less beautiful and simple and directly suitable for the purpose
than Maclaurin’s, but still a very remarkable theorem, curiously
different from Maclaurin’s, and in one respect more important
and comprehensive, because, as was shown by Poisson, it is
not confined to the Newtonian Law of Attraction, but holds
for force varying as any function of the distance. Before enun-
ciating Ivory’s theorem, take his following definition :—

Correspond- 528, Corresponding points on two confocal ellipsoids are
:'r'-' eg?lfo:l any two points which coincide when either ellipsoid is deformed
Soned. " by a pure strain so as to coincide with the other.

Digreasions  In connection with this definition, it is interesting to remark
trajectory

of cufocal that each point on the surface of the changing ellipsoid de-
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scribes an orthogonal trajectory of the intermediate series of cllipenids is
confocal ellipsoids if the distortion specified in the definition any POintof
is produced continuously in such a manner that the surface %-?mpljy
of the ellipsoid is always confocal with its original figure, soid:

To prove this proposition, which however is not necessary for proof.
our present purpose, let abc be the semi-axes of the ellipsoid in
one configuration, and ,/(a" +4), /(" + &), J/(c* + k) in another.
If zyz be the co-ordinates of any point P on the surface in the
first configuration, its co-ordinates in the second configuration °

will be
N SN S

‘When 4 is infinitely small the differences of the co-ordinates of
these points are

x 2
Bo, B B5

Hence the direction-cosines of the line joining them are propor-
tional to z/a%, y/b% z/c', and therefore it coincides with the
normal to the two infinitely nearly coincident surfaces.

530. The property of corresponding pomts (essential for Ivorys
Ivory’s theorem, and for Chasles’, § 532 below) is this :— gorrespond:
If P, P’ be any two points on one ellipsoid, and Q, Q' the
corresponding points on any confocal ellipsoid, PQ’ is equal
to P'Q.
To prove this, let xzyz be the co-ordinates of P, and z'y'?
those of /. Taking (32) as the co-ordinates of @, we find

, o'+ h\* , '+ A
P'Q’=(a/—z + y—y\/——b,——) +(z-z p )
—o -2, [ER z'(1+——)+&c.
Now because (z, y, z) is on the ellipsoidal surface (a, b, ¢), we
have
AN A
Hence the preceding becomes

2 2
PQ'=a"+y " +2"- 2(u J ol +h J b +" '\/ c—ci,l‘)+z'+y'+z'+h.
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This is symmetrical in respect to zyz and z'y’?, and so the
proposition is proved.

681. The following is Ivory’s Theorem :—Let P and P be
corresponding points on the surfaces of two homogeneous con-
focal ellipsoids (a, &, c) (@', ¥, ¢); the a-component of the
attraction of the ellipsoid abc on the point P is to the z-com-
ponent of the attraction of the ellipsoid a'd’c’ on the point P as
be is to b'c’.

Let z, y, 2 be the co-ordinates of P, the attracted point;
w & ¢ » coordinates of any point of the mass ;
sy D ,»  distance between the two points;
» F (D) dédnd{ be the attraction of the elementul mass
dédnd{ at (é, Ll C): on (x, ¥ z);

Let X be the z-component of the attraction of the whole ellip-
soid (@, b, ¢) on (z, ¥, 2).

‘We have

x - ([feeanaer (0% - [[fatanar p0) « (- 22
- f fd-qd{ f- F(D)dD.
Now F (D) being any function of D, let
[7(D)ap--y (D);

and let E, @ be the positive and negative ends of the bar dyd{
of the ellipsoid, that is to say, the points on the positive and
negative sides of the plane yoz in which the surface of the
ellipsoid is cut by the line parallel to ox, having %{ for its other
co-ordinates. The proper limits being assigned to the D-integra-
tion in the formula for X above being assigned, we find

X~ [[andtiy (EF) - v (6P}

Now let E'G" be points on a confocal ellipsoidal surface
(a', ¥, ¢') through P, corresponding to £ and & on the surface of
the given ellipsoid (g, 3, c); and let P’ be the point on the first
ellipsoidal surface corresponding to P on the second. The y- z-
oco-ordinates common to £°G" are respectively b'/b.n and c'jc. {;
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and by lemma EP=EP and GP=GP. Hence if we change
from »%{, as variables for the double integration in the preceding
formula for X, to n’{', we find

X2 [Janae o @PY -y @Y,
which is Ivory’s theorem.

632. Two confocal homoeoids of equal masses being given, Chames
the potentlal of the first at any point, P, of the surface of the bekween
second, ig equal to that of the second at the corresponding tialsof two

point, P, on the surface of the first. Somosolds.

Let E be any element of the first and E’ the corresponding
element of the second. The mass of each element bears to the
mass of the whole homoeoid the same ratio as the mass of the
corresponding element of a uniform spherical shell, from which
either homoeoid may be derived, bears to the whole mass of
the spherical shell. Hence the mass of £ is equal to the mass
of £'; and by Ivory’s lemma (§ 530) PE =P'E. Hence the
proposition is true for the parts of the potential due to the
corresponding elements, and therefore it ls due for the entire
shells.

This beautiful proposition is due to Chasles. It holds, what- Proofot,
ever be the law of force. From it, for the case of the inverse rheoregl.
square of the distance, and from Newton’s Theorem for this atiraction
case that the force is zero within an elliptic homoeoid, or, which Somosoid.
is the same, that the potential is constant through the interior,
it follows that the external equipotential surfaces of an elliptic
homoeoid are confocal ellipsoids, and therefore that the attrac-
tion on an external point is normal to a confocal ellipsoid
passing through the point; which is the same conclusion as that

of § 521 above.

633. An ingenious application of Ivory’s theorem, by rawofat-
Dubamel, must not be omitted here. Concentric spheres 4T when a uni-

a particular case of confocal ellipsoids, and therefore the at- wisnat

traction of any sphere on a point on the surface of an internal ;cﬁ'{':ﬁgm
concentric sphere, is to that of the latter upon a point in the point.
surface of the former as the squares of the radii of the spheres.

Now if the law of attraction be such that a homogeneous spherical



hw of at-
raction

78 ABSTRACT DYNAMICS. [533.

shell of uniform thickness exerts no attraction on an internal point,

whensuni- the action of the larger sphere on the internal point is reduced

form spheri-
cal shell
exerts no

to that of the smaller. Hence the smaller sphere attracts

ction on an points on its surface and points external to it, with forces

internal
point.
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inversely as the squares of their distances from its centre.
Hence the law of force i3 the inverse square of the distance, as is
easily seen by making the smaller sphere less and less till it
becomes a mere particle. This theorem is due originally to
Cavendish.

634. (Definition.) If the action of terrestrial or other gravity
on a rigid body is reducible to a single force in a line passing
always through one point fixed relatively to the body, whatever
be its position relatively to the earth or other attracting mass,
that point is called its centre of gravity, and the body is called
a centrobaric body.

One of the most startling results of Green’s wonderful
theory of the potential is its establishment of the existence of
centrobaric bodies; and the discovery of their properties is
not the least curious and interesting among its very various
applications.

634a. If a body (B) is centrobaric relatively to any one
attracting mass (4), it is centrobaric relatively to every other:
and it attracts all matter external to itself as if its own mass
were collected in its centre of gravity *.

Let O be any point so distant from B that a spherical surface
described from it as centre, and not containing any part of B,
is large enough entirely to contain 4. Let A be placed within
any such spherical surface and made to rotate about any axis,
OK, through O. It will always attract B in a line through @,
the centre of gravity of B. Hence if every particle of its mass
be uniformly distributed over the circumference of the circle
that it describes in this rotation, the mass, thus obtained, will
also attract B in a line through G- And this will be the case
however this mass is rotated round O ; since before obtaining
it we might have rotated A and OK in any way roun